https://doi.org/10.33647/2074-5982-21-3-117-121

ПОДХОДЫ К ОЦЕНКЕ ЭФФЕКТИВНОСТИ И БЕЗОПАСНОСТИ ИСПОЛЬЗОВАНИЯ ГЛЮКОКОРТИКОСТЕРОИДНЫХ ПРЕПАРАТОВ НА ЭКСПЕРИМЕНТАЛЬНОЙ МОДЕЛИ ОСТРОГО РЕСПИРАТОРНОГО ДИСТРЕСС-СИНДРОМА

В.А. Пугач^{1,*}, Н.И. Волошин², П.А. Махрачев¹, М.А. Тюнин¹, Е.А. Суворова¹, К.И. Таборская¹, В.В. Салухов²

¹ ФГБУ «Государственный научно-исследовательский испытательный институт военной медицины» Минобороны России 195043, Российская Федерация, Санкт-Петербург, ул. Лесопарковая, 4

² ФГБВОУ ВО «Военно-медицинская академия имени С.М. Кирова» Минобороны России 194044, Российская Федерация, Санкт-Петербург, ул. Акад. Лебедева, 6

На экспериментальной модели острого респираторного дистресс-синдрома установлено, что в качестве легковоспроизводимых параметров оценки эффективности и безопасности различных схем терапии глюкокортикостероидами могут быть рекомендованы показатели жизнеспособности клеток в бронхоальвеолярной лаважной жидкости, расчетные значения индекса проницаемости аэрогематического барьера, а также другие рутинные цитологические и биохимические показатели.

Ключевые слова: острый респираторный дистресс-синдром, крысы, липополисахарид, глюко-кортикостероиды, эффективность, безопасность

Конфликт интересов: авторы заявили об отсутствии конфликта интересов.

Для цитирования: Пугач В.А., Волошин Н.И., Махрачев П.А., Тюнин М.А., Суворова Е.А., Таборская К.И., Салухов В.В. Подходы к оценке эффективности и безопасности использования глюкокортикостероидных препаратов на экспериментальной модели острого респираторного дистресс-синдрома. Биомедицина. 2025;21(3):117–121. https://doi.org/10.33647/2074-5982-21-3-117-121

Поступила 01.04.2025 Принята после доработки 11.08.2025 Опубликована 10.09.2025

APPROACHES TO EFFICACY AND SAFETY ASSESSMENT OF GLUCOCORTICOSTEROID DRUGS IN EXPERIMENTAL ACUTE RESPIRATORY DISTRESS SYNDROME

Victoria A. Pugach^{1,*}, Nikita I. Voloshin², Pavel A. Makhrachev¹, Mikhail A. Tyunin¹, Eugenia A. Suvorova¹, Ksenia I. Taborskaya¹, Vladimir V. Salukhov²

¹ State Scientific Research Testing Institute of Military Medicine of the Ministry of Defence of Russia 195043, Russian Federation, Saint Petersburg, Lesoparkovaya Str., 4

> ² S.M. Kirov Military Medical Academy of the Ministry of Defence of Russia 194044, Russian Federation, Saint Petersburg, Akad. Lebedeva Str., 6

An experimental model of acute respiratory distress syndrome was used to determine the following easily reproducible parameters for assessing the efficacy and safety of various glucocorticosteroid therapy regimens: cell viability in bronchoalveolar lavage fluid, calculated values of air-blood barrier permeability index, as well as other routine cytological and biochemical indicators.

117

Keywords: acute respiratory distress syndrome, rats, lipopolysaccharide, glucocorticosteroids, efficacy, safety

Conflict of interest: the authors declare no conflict of interest.

For citation: Pugach V.A., Voloshin N.I., Makhrachev P.A., Tyunin M.A., Suvorova E.A., Taborska-ya K.I., Salukhov V.V. Approaches to Efficacy and Safety Assessment of Glucocorticosteroid Drugs in Experimental Acute Respiratory Distress Syndrome. *Journal Biomed.* 2025;21(3):117–121. https://doi.org/10.33647/2074-5982-21-3-117-121

Submitted 01.04.2025 Revised 11.08.2025 Published 10.09.2025

Введение

Важнейшим направлением патогенетической терапии острого респираторного дистресс-синдрома (ОРДС) служит применение глюкокортикостероидных препаратов (ГКС). Несмотря на стремительный рост исследований, посвященных оптимизации режимов назначения ГКС, степень разработанности проблемы оценки эффективности и безопасности препаратов данной группы при ОРДС остается низкой [2]. Ввиду того что в большинстве опубликованных работ представлены разнородные выборки пациентов и отсутствует прямое сравнение эквивалентных доз ГКС при ОРДС, невозможно сделать вывод о достаточном противовоспалительном действии препаратов и оптимальном соотношении пользы/риска при их дозировании [3]. В связи с этим представляются актуальными доклинические исследования по разработке легко воспроизводимых в экспериментальной практике подходов к оценке эффективности и безопасности использования ГКС на фоне ОРДС, что и послужило целью настоящей работы.

Материалы и методы

Исследование выполнено на 100 самцах нелинейных крыс массой тела 310–350 г (филиал «Столбовая» ФГБУН НЦБМТ ФМБА России, Московская обл.). ОРДС моделировали интратрахеальным введением липополисахарида Salmonella enterica ("Sigma-Aldrich", США) (n=20) в соответ-

ствии с методикой [1]. В качестве контроля использовали животных после инстилляции фосфатно-солевого буфера (n=20). Через 3 ч крысам внутримышечно вводили р-р дексаметазона в следующих режимах: в дозе 0,52 мг/кг (эквивалентно 6,0 мг/сут для человека) 1 р./сут в течение 7 сут (n=20), в дозе 1,71 мг/кг (эквивалентно 20,0 мг/сут для человека) 1 р./сут в течение 7 сут (n=20), в дозе 8,00 мг/кг (эквивалентно 93,0 мг/сут, т.е. пульс-терапии для человека) 1 р./сут в течение 3 сут (n=20). Через 7 сут у всех выживших и контрольных животных оценивали степень выраженности отека легких посредством расчета массового коэффициента органа, затем отбирали его образцы для исследования гистопатологических изменений, а также пробы бронхоальвеолярной лаважной жидкости (БАЛЖ) и венозной крови. В БАЛЖ исследовали биохимические показатели, общее количество клеток (цитоз), их жизнеспособность (% живых клеток) (счетчик клеток C100, "RWD Life Science", Китай), а также выполняли подсчет эндопульмональной цитограммы. Пробы венозной крови использовали для выполнения клинического (анализатор BC-2800Vet, "Mindray", Китай) и биохимического анализа (анализатор ChemWell 2910, "Awarenes Technology", США). Статистическую обработку результатов проводили при помощи непараметрической статистики. Различия считали статистически значимыми при р<0,05.

Результаты и их обсуждение

После введения липополисахарида выживаемость крыс на фоне ОРДС составила 40%, при этом массовый коэффициент легких у выживших особей был увеличен на 134% (p<0,05) в сравнении с контроль-

ными животными. Основными гистопатологическими паттернами ОРДС были проявления альвеолита, эмфиземы, ателектазы, тромбозы мелких сосудов и геморрагии, что соответствует результатам предыдущих исследований [1]. Введение крысам

Таблица. Показатели в бронхоальвеолярной лаважной жидкости и в крови у крыс после моделирования OPAC и введения дексаметазона в различных дозах, (Me [Q1; Q3])

Table. Parameters of bronchoalveolar lavage fluid and blood in rats after acute respiratory distress syndrome (ARDS) and administration of dexamethasone in various doses, (Me [Q1; Q3])

12 2 1/2					
Экспериментальные группы:					
Показатели	Контроль	ордс	ОРДС + дексаметазон (0,52 мг/кг)	ОРДС + дексаметазон (1,71 мг/кг)	ОРДС + дексаметазон (8,00 мг/кг)
Бронхоальвеолярная лаважная жидкость					
Общее количество клеток, 10 ⁷ /мл	6,02	18,06*	9,47#	9,08#	8,67#
	[4,04; 6,81]	[14,45; 24,28]	[6,92; 13,31]	[8,77; 13,25]	[6,60; 11,00]
Живые клетки,%	92,50	83,50	75,00*	70,00*#	55,50*#^
	[89,75; 94,00]	[82,73; 85,50]	[65,00; 87,00]	[40,50; 78,75]	[43,25; 72,74]
Нейтрофилы,10 ⁷ /мл	1,36	8,86*	6,05*#	5,98*#	5,81*#
	[0,61; 1,93]	[7,78; 15,67]	[3,94; 7,51]	[5,65; 7,97]	[3,96; 7,08]
Лимфоциты,10 ⁷ /мл	2,68	2,53	1,34*#	1,25*#	1,02*#
	[2,15; 3,01]	[2,10; 4,77]	[1,06; 2,04]	[1,17; 1,66]	[0,89; 1,26]
Макрофаги,10 ⁷ /мл	1,84	2,47*	1,69#	1,42#	1,57#
	[1,31; 2,01]	[2,16; 3,54]	[1,39; 2,79]	[1,28; 2,94]	[1,23; 2,21]
Общий белок,г/л	0,59	2,31*	1,63*#	2,31*	2,62*^
	[0,37; 0,76]	[1,80; 2,91]	[1,22; 1,81]	[2,12; 3,16]	[2,10; 3,99]
Альбумин,г/л	0,20	0,59*	0,49*	0,88*	1,37*^
	[0,18; 0,23]	[0,39; 1,00]	[0,34; 1,08]	[0,49; 1,86]	[0,64; 1,86]
Лактатдегидрогеназа,	43,28	203,86*	212,22*	261,83*	266,03*
Ед/л	[25,65; 57,71]	[138,50; 299,04]	[177,77; 289,39]	[128,16; 277,33]	[216,36; 283,54]
Кровь					
Лейкоциты,10°/л	7,25	13,52*	7,52#	7,68#	7,34#
	[6,83; 8,23]	[10,81; 15,13]	[6,21; 9,88]	[6,56; 9,85]	[6,03; 9,73]
Гранулоциты,10 ⁹ /л	1,85	8,35*	4,35*#	4,34*#	4,22*#
	[1,63; 2,36]	[6,08; 9,36]	[3,77; 5,21]	[3,80; 5,37]	[3,44; 5,16]
Лимфоциты,10°/л	5,25	5,38	2,43*#	2,17*#	2,19*#
	[4,83; 5,60]	[4,34; 5,86]	[2,31; 3,14]	[1,98; 3,07]	[1,78; 2,43]
Моноциты,10 ⁹ /л	0,15	0,29	0,91*#	1,11*#	0,92*#
	[0,10; 0,20]	[0,17; 0,31]	[0,50; 1,52]	[0,63; 1,55]	[0,61; 1,56]
Общий белок,г/л	53,65	67,07	73,81*#	77,11*#	75,40*#
	[45,84; 65,08]	[62,97; 70,27]	[71,24; 76,32]	[71,75; 81,28]	[71,47; 78,48]
Альбумин,г/л	31,23	32,02	38,42*#	38,80*#	38,68*#
	[30,31; 32,84]	[30,67; 32,40]	[36,37; 40,65]	[36,31; 43,87]	[35,63; 42,25]
Лактатдегидро-	190,63	699,59*	484,61*#	565,00*	520,75*
геназа, Ед/л	[121,83; 236,44]	[501,61; 1044,56]	[271,93; 534,45]	[436,00; 626,32]	[395,96; 645,15]
Индекс	0,010	0,035*	0,022#	0,032*	0,033*^
проницаемости	[0,008; 0,014]	[0,023; 0,044]	[0,017; 0,025]	[0,028; 0,044]	[0,028; 0,050]

Примечание: * — различия статистически значимы относительно животных контрольной группы (p<0,05, критерий Краскела—Уоллиса); # — различия статистически значимы относительно животных после моделирования ОРДС (p<0,05, критерий Краскела—Уоллиса); ^ — различия статистически значимы относительно животных после моделирования ОРДС и введения минимальной дозы дексаметазона (p<0,05, критерий Манна—Уитни).

Note: * — differences are statistically significant relative to the control (p<0.05, Kruskal-Wallis test); # — differences are statistically significant relative to the ARDS group (p<0.05, Kruskal-Wallis test); ^ — differences are statistically significant relative to the ARDS group with minimal dose of dexamethasone administration (p<0.05, Mann-Whitney test).

дексаметазона в минимальной и средней дозах на фоне ОРДС увеличивало их выживаемость до 70% (p<0,05), а в максимальной дозе препарата — до 60% (p<0,1), при этом степень уменьшения массового коэффициента лёгких после введения всех доз ГКС была одинаковой и составила в среднем 28% по отношению к животным без применения терапии (р<0,05). Несмотря на общую направленность противовоспалительных эффектов лексаметазона после применения максимальной дозы ГКС, количество тромбозов мелких сосудов и геморрагий в лёгких было выше (p<0,05) в сравнении с использованием минимальной дозы препарата. В БАЛЖ на фоне ОРДС отмечали увеличение общего количества клеток (цитоза), числа нейтрофилов и макрофагов, содержания общего белка, альбумина и лактатдегидрогеназы (p<0,05); в крови определяли лейкоцитоз, гранулоцитоз, повышение уровня лактатдегидрогеназы, увеличение индекса проницаемости аэрогематического барьера (рассчитывали как отношение уровня общего белка в БАЛЖ к уровню этого показателя в крови) (р<0,05) (табл.).

После введения крысам дексаметазона во всех исследованных дозах выявляли реализацию местных и системных противовоспалительных эффектов, характерных для препаратов данной группы [2, 3]. Показателями системного катаболического действия дексаметазона у животных выступали повышение уровней общего белка

и альбумина в крови (p<0,05), а признаками иммуносупрессии при использовании ГКС — лимфоцитопения, уменьшение количества лимфоцитов в БАЛЖ, а также дозозависимое снижение процента живых клеток (p<0,05). Уменьшение проницаемости аэрогематического барьера по показателю общего белка в БАЛЖ (p<0,05) определяли только после введения минимальной дозы дексаметазона, что подтверждалось также расчетными значениями индекса (p<0,05).

Заключение

На модели ОРДС показано, что введение крысам дексаметазона в минимальной дозе, составляющей 0,52 мг/кг (эквивалентно 6,0 мг/сут для человека), не только не уступает по выраженности местных и системпротивовоспалительных ных эффектов в сравнении с применением ГКС в высоких дозах (эквивалентных 20,0 мг/сут и пульс-терапии для человека), но и служит более безопасным режимом дозирования препарата. С учетом катаболического и иммуносупрессивного действия у ГКС определение индекса проницаемости аэрогематического барьера и жизнеспособности клеток (лейкоцитов) в БАЛЖ, а также других представленных рутинных цитологических и биохимических показателей может быть рекомендовано в качестве легковоспроизводимых параметров оценки эффективности и безопасности различных глюкокортикостероидной терапии на фоне экспериментального ОРДС.

СПИСОК ЛИТЕРАТУРЫ | REFERENCES

- 1. Пугач В.А., Тюнин М.А., Ильинский Н.С., Левчук Е.В., Строкина Е.И., Ельцов А.А. Экспериментальная модель прямого острого повреждения легких у крыс, вызванного интратрахеальным введением липополисахарида Salmonella enterica. Биомедицина. 2021;17(3):84–89. [Pugach V.A., Tyunin M.A., Ilinskiy N.S., Levchuk E.V., Strokina E.I., Eltsov A.A. Eksperimental'naya model' pryamogo ostrogo povrezhdeniya legkih u krys, vyzvannogo intratraheal'nym vvedeniem lipopolisaharida Salmonella enter-
- ica [An experimental model of direct acute lung injury in rats caused by intratracheal administration of lipopolysaccharide from Salmonella enterica]. Biomeditsina [Journal Biomed]. 2021;17(3):84–89. (In Russian)]. DOI: 10.33647/2074-5982-17-3-84-89.
- Jayasimhan D., Matthay M.A. Corticosteroids in adults with acute respiratory distress syndrome and severe pneumonia. *BJA Educ*. 2023;23(12):456–463. DOI: 10.1016/j.bjae.2023.08.00.

3. Zhao Y., Yao Z., Xu S., Yao L., Yu Z. Glucocorticoid therapy for acute respiratory distress syndrome: Current concepts. Journal of intensive medicine. 2024;4(4):417-432. DOI: 10.1016/j.joint.2024.02.002.

СВЕДЕНИЯ ОБ ABTOPAX | INFORMATION ABOUT THE AUTHORS

Пугач Виктория Александровна*, к.б.н., доц., ФГБУ «Государственный научно-исследовательский испытательный институт военной медицины» Минобороны России;

e-mail: gniiivm 7@mil.ru

Волошин Никита Игоревич, к.м.н., ФГБВОУ ВО «Военно-мелицинская акалемия С.М. Кирова» Минобороны России;

преподаватель;

e-mail: vmeda-na@mil.ru

Махрачев Павел Алексеевич, ФГБУ «Государнаучно-исследовательский ственный испытательный институт военной медицины» Минобороны России:

e-mail: gniiivm 7@mil.ru

Тюнин Михаил Александрович, к.м.н., ФГБУ «Государственный научно-исследовательский испытательный институт военной медицины» Минобороны России;

e-mail: gniiivm 7@mil.ru

Суворова Евгения Александровна, ФГБУ «Государственный научно-исследовательский испытательный институт военной медицины» Минобороны России;

e-mail: gniiivm 7@mil.ru

Таборская Ксения Игоревна, ФГБУ «Государственный научно-исследовательский испытательный институт военной медицины» Минобороны России;

e-mail: gniiivm 7@mil.ru

e-mail: <u>vmeda-na@mil.ru</u>

Салухов Владимир Владимирович, д.м.н., проф., ФГБВОУ ВО «Военно-медицинская академия имени С.М. Кирова» Минобороны России:

Victoria A. Pugach*, Cand. Sci. (Biol.), Assoc. Prof., State Scientific Research Testing Institute of Military Medicine of the Ministry of Defence of Russia;

e-mail: gniiivm 7@mil.ru

Nikita I. Voloshin, Cand. Sci. (Med.), S.M. Kirov Military Medical Academy of the Ministry of Defence of Russia;

e-mail: vmeda-na@mil.ru

Pavel A. Makhrachev, State Scientific Research Testing Institute of Military Medicine of the Ministry of Defence of Russia;

e-mail: gniiivm 7@mil.ru

Mikhail A. Tyunin, Cand. Sci. (Med.), State Scientific Research Testing Institute of Mili-tary Medicine of the Ministry of Defence of Russia:

e-mail: gniiivm 7@mil.ru

Eugenia A. Suvorova, State Scientific Research Testing Institute of Military Medicine of the Ministry of Defence of Russia;

e-mail: gniiivm 7@mil.ru

Ksenia I. Taborskaya, State Scientific Research Testing Institute of Military Medicine of the Ministry of Defence of Russia;

e-mail: <u>gniiivm 7@mil.ru</u>

Vladimir V. Salukhov, Dr. Sci. (Med.), Prof., S.M. Kirov Military Medical Academy of the Ministry of Defence of Russia;

e-mail: vmeda-na@mil.ru

^{*} Автор, ответственный за переписку / Corresponding author