Влияние фосфорорганических соединений на факторы врожденного иммунитета мышей

Т.С. Запорожец¹, Л.А. Иванушко¹, А.К Гажа¹, Е.В.Михеев², Н.Н. Ковалев²

- ¹ Научно-исследовательский институт эпидемиологии и микробиологии Сибирского отделения РАМН
- 2 Тихоокеанский научно-исследовательский рыбохозяйственный центр, Владивосток

Контактная информация: д.м.н Запорожец Татьяна Станиславовна, niiem_vl@mail.ru

Проведено исследование влияния фосфорорганического соединения О-этил-S-гексилметилтиофосфаната (Φ OC) на активность сывороточной холинэстеразы и факторы врожденного иммунитета неинбредных мышей. Установлено, что О-этил-S-гексилметилтиофосфанат (LD_{50} для неинбредных мышей при внутрибрюшинном введении 12,33±4,05 мг/кг) ингибирует активность сывороточной холинэстеразы, достигая максимума к 24 ч после введения. Фосфорорганическое соединение обладает выраженным иммунотоксическим действием в отношении факторов врожденного иммунитета экспериментальных животных, вызывая лейкопению, обусловленную уменьшением относительного содержания нейтрофильных лейкоцитов, угнетение функциональной активности нейтрофилов и макрофагов (снижение адгезивной и бактерицидной активности).

Ключевые слова: фосфорорганические соединения, холинэстераза, врожденный иммунитет.

Введение

Вопросы, связанные с изучением холинэстеразы и антихолинэстеразных веществ, в течение многих лет находятся в центре внимания специалистов различного профиля [1]. Токсикология антихолинэстеразных средств имеет большое значение, поскольку препараты этого механизма действия довольно часто используются в быту в качестве инсектицидов [8] или в сельском хозяйстве в качестве пестицидов [2]. Эти вещества чаще всего относятся к группе фосфорорганических соединений (ФОС) [6]. Обладающие выраженной физиологической активностью, ФОС нашли применение и в медицинской практике [5]. Общепризнанно, что ведущим звеном в механизме действия этих веществ на организм человека и теплокровных животных является нарушение каталитической функции фер-

мента холинэстеразы во всех органах и структурах, имеющих холинергическую иннервацию, и, прежде всего, в нервной системе [1]. Однако влияние таких соединений на организм не ограничивается ингибированием холинэргическских процессов. В ряде публикаций представлены доказательства роли иммунной системы в патогенезе нейротоксического действия, наблюдаемого при воздействии ФОС на организм [4, 9].

Целью настоящей работы явилась оценка влияния фосфорорганического соединения на холинэргическую и иммунную системы экспериментальных животных *in vivo*.

Материалы и методы

В качестве ФОС использовали синтетический О-этил-S-гексилметилтиофосфанат (шифр ЛГ-63), который среди О-этил-S-

гексилметилтиофосфанатов с нормальным алкильным радикалом является активным антихолинэстеразным соединением.

Экспериментальные исследования выполнены на неинбредных белых конвенциональных мышах-самцах (возраст 2-3 мес.) массой 18-20 г, полученных из питомника «Рассвет», НПО «Вирион», г. Томск. Все исследования проводились в соответствии с «Правилами лабораторной практики в Российской Федерации» [7], международными рекомендациями Европейской конвенции по защите позвоночных животных, используемых в экспериментальных работах, и стандартными операционными процедурами лаборатории.

Мышей содержали в комнатах барьерного типа с контролируемыми условиями окружающей среды в пластиковых клетках (по 2 животных в клетке площадью 400 см²) на подстиле из резаной пищевой бумаги. Животные получали стандартный пищевой рацион и профильтрованную водопроводную воду.

Острую токсичность (LD_{50}) ФОС определяли, вводя мышам (по 8 особей в группе) внутрибрющинно О-этил-S-гексилметилтиофосфанат в дозах 100 мкг/мышь (5 мг/кг), 500 мкг/мышь (25 мг/кг) и 1000 мкг/мышь (50 мг/кг) в физиологическом растворе в объеме 0,5 мл. LD_{50} расчитывали с помощью метода пробит-анализа. Для оценки влияния соединения на остаточную активность холинэстеразы в сыворотке крови, клеточность лимфоидных органов и факторы врожденного иммунитета мышам (по 6 особей в группе) вводили ФОС внутрибрюшинно в сублетальной дозе 100 мкг/мышь (5 мг/кг) в 0,5 мл физиологического раствора. Контрольной группе животных вводили физиологический раствор в том же объеме, что и исследуемый препарат. Через 2, 4, 16, 24, 48, 72 ч мышей выводили из опыта декапитацией под эфирным наркозом и определяли остаточную активность холинэстеразы в сыворотке крови спектрофотометрическим методом Элмана [11] с использованием в качестве субстрата иодида ацетилтиохолина (ICN, CIIIA). Абсолютное количество лейкоцитов, лейкоцитарную формулу, общую клеточность лимфоидных органов (количество ядросодержащих клеток (ЯСК)), клеточный состав экссудата перитонеальной полости подсчитывали стандартными методами [3]. Фагоцитарную активность нейтрофилов и макрофагов перитонеальной полости мышей регистрировали по поглощению S. aureus (штамм 209). Для этого взвесь клеток в объеме 100 мкл соединяли в центрифужных пробирках со 100 мкл взвеси S. aureus в соотношении 1:20, инкубировали 30 мин при 37°С, центрифугировали при 200 g 5 мин, надосадочную жидкость сливали, из осадка готовили мазки, фиксировали метанолом, окрашивали азур-ІІ-эозином и микроскопировали, определяя фагоцитарный показатель $(\Phi\Pi\%)$ – процент клеток, участвующих в фагоцитозе, и фагоцитарное число (ФЧ) - среднее число микроорганизмов, поглощенных одним фагоцитом. Адгезивные свойства и бактерицидную активность (НСТ-тест) клеток перитонеальной полости мышей исследовали спектрофотометрическим методом [10].

Статистическую обработку полученных данных проводили с помощью пакета программ «Statistica 6». Использовались следующие методы статистического анализа: проверка нормальности распределения количественных признаков при малом числе наблюдений с использованием W-критерия Шапиро-Уилка, оценка значимости различий при нормальном

распределении количественных признаков — t-критерий Стьюдента (для независимых выборок), при ненормальном распределении - непараметрический критерий Манна-Уитни (для сравнения двух попарно не связанных между собой вариационных рядов). Для множественных сравнений использовали дисперсионный ранговый метод ANOVA (Kruskal-Wallis) & Median test. Выборочные параметры, приводимые далее в таблицах, имеют следующие обозначения: средняя арифметическая (М), стандартное отклонение (о), значения медианы и интерквантильного размаха Me (LQ-UQ), объем анализируемой подгруппы (n). Уровень доверительной вероятности был задан равным 95%.

Результаты и их обсуждение

При изучении острой токсичности О-этил-S-гексилметилтиофосфаната проводили наблюдение за животными, оценивали сроки гибели, число павших животных, клиническую картину интоксикации, поведенческие реакции. LD_{50} ФОС для белых неинбредных мышей при внутрибрюшинном введении составила $12,33\pm4,05$ мг/кг (рис. 1).

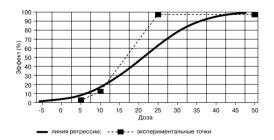


Рис. 1. Пробит-анализ. Вероятность наступления смерти (по оси ординат, в %) в зависимости от дозы О-этил-S-гексилметилтиофосфаната (по оси абсцисс, в мг/кг).

При исследовании антиферментной активности О-этил-S-гексилметилтиофосфаната изучали его взаимодей-

ствие с ацетилхолинэстеразой сыворотки крови мышей. Токсический эффект при введении 5 мг/кг соединения развивался в течение 24 ч, когда остаточная активность холинэстеразы сыворотки крови животных снижалась максимально (рис. 2). Восстановление исходного уровня активности фермента наблюдалось через 48 ч после введения ФОС.

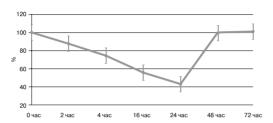


Рис. 2. Остаточная активность сывороточной холинэстеразы плазмы крови мышей после введения сублетальной дозы ФОС (в % к контролю, принятому за 100%).

Через 2 ч после внутрибрющинного введения мышам ФОС в дозе 5 мг/кг наблюдался транзиторный лейкоцитоз, сменяющийся через 4 ч лейкопенией, обусловленной уменьшением относительного содержания нейтрофильных лейкоцитов. Масса и клеточность селезенки в течение 4 ч не изменялись (ANOVA (Kruskal-Wallis:p=0,306) (табл. 1). В экссудате перитонеальной полости 46,2±8,2% нейтрофилов и 37,5±4,5% макрофагов были полностью разрушены. Фагоцитарная активность неповрежденных клеток была значительно снижена по сравнению с контролем (интактные мыши) (табл. 2).

Через 4 ч количество нейтрофилов, участвующих в фагоцитозе, несколько увеличивалось, что объясняется миграцией неповрежденных клеток из кровеносного русла (табл. 2), однако способность к поглощению оставалась сниженной и у этих клеток. Фагоцитарная активность

Влияние ФОС на клеточный состав периферической крови, клеточность и массу селезенки неинбредных мышей

Таблина 1

Показатели	Группа		Shapiro- Wilk, W	M±♂ (Me) (LQ-UQ)	Mann– Whitney, T-test p	ANOVA (Kruskal- Wallis) p	
Лейкоциты (109/л)	Контроль		0,88	6,90±0,81			
	ФОС	2 часа	0,98	9,40±2,45	0,041	0	
		4 часа	0,84	4,50±1,04	0,002		
Моноциты (%)	Контроль		0,90	10,2±1,6			
	ФОС	2 часа	0,95	8,2±1,2	0,033	0,099	
		4 часа	0,95	8,8±1,5	0,144		
	Контроль		0,85	7,41±1,93			
Сегментоядерные нейтрофилы (%)	ФОС	2 часа	0,93	4,28±1,32	0,008	0	
		4 часа	0,74	18,1±3,1 17,00 (16,00;24,00)	0	-	
Палочкоядерные нейтрофилы (%)	Контроль		0,68	0,5±0,55 0,5 (0,00; 1,00)			
	ФОС	2 часа	0,68	1,5±0,54 1,5 (1,00;2,00)	0,01	0,007	
		4 часа	0,82	2,0±0,63	0,001		
Лимфоциты (%)	Контроль		0,98	81,0 ±4,9			
	ФОС	2 часа	0,94	85,3±5,6	0,187	0,004	
		4 часа	0,98	71±4,9	0,005		
	Контроль		0,94	301,6±56,3			
Клеточность селезенки (ЯСКх106)	ФОС	2 часа	0,78	322,6±67,3 357,00 (226,00; 378,00)	1	0,306	
		4 часа	0,82	339,5±67,3	0,273		
Масса селезенки (мг)	Контроль		0,84	222,6±51,9			
	ФОС	2 часа	0,84	221,2±40,6	0,544	0,306	
		4 часа	0,77	197,8±81,5 195,00 (100,00; 338,00)	1		

Примечание: для всех значений критерия W - p>0,05 (параметры имеют нормальное распределение).

Биомедицина № 1, 2013 ³⁸ Biomedicine № 1, 2013

макрофагов перитонеальной полости мышей, инъецированных ФОС, продолжала снижаться, поскольку миграция этой популяции клеток в ответ на раздражитель наблюдалась позже – через 24 ч, а функциональная активность присутствующих в брюшной полости макрофагов ингибировалась под действием ФОС.

При исследовании влияния ФОС на функциональную активность клеток перитонеальной полости установлено снижение способности фагоцитов к адгезии

на пластик и продукции активных форм кислорода (табл. 2).

Выводы

Таким образом, полученные результаты указывают, что фосфоорганическое соединение – этил-S-гексилметилтиофосфанат – при внутрибрющинном введении неинбредным мышам в дозе 5 мг/кг приводит к угнетению активности сывороточной холинэстеразы и обладает выраженным иммунотоксическим

Таблина 2 Влияние ФОС на функциональную активность клеток перитонеальной полости неибредных мышей

Показатели		Группа		Shapiro- Wilk, W	M±Ơ (Me) (LQ-UQ)	Mann– Whitney, T-test p	ANOVA (Kruskal- Wallis) p
Макрофаги	ФП (%)	Контроль		0,82	76,3±6,6		
		ФОС	2 часа	0,92	55,3±6,2	0	0
			4 часа	0,98	32,2±3,8	0	
	ФЧ	Контроль		0,88	15,0±2,7		
		ФОС	2 часа	0,98	7,3±2,2	0	0
			4 часа	0,84	1,4±0,2	0	
Нейтрофилы	ФП (%)	Контроль		0,97	42,3±6,7		
		ФОС	2 часа	0,85	28,3±3,2	0,002	0,006
			4 часа	0,95	33,7±4,9	0,004	
	ΦЧ	Контроль		0,90	2,7±1,2		
		ФОС	2 часа	0,82	1,0±0,6	0,014	0,024
			4 часа	0,63	1,3±0,5 1,0 (1,00; 2,00)	0,033	
КПП	Адгезия (тыс. кл)	Контроль		0,92	363,6±26,6		
		ФОС	2 часа	0,98	308,8±30,3	0,008	0,004
			4 часа	0,96	277,0±28,7	0	
	НСТ (ОД x 10-3)	Контроль		0,88	13,2±3,4		
		ФОС	2 часа	0,98	6,4±1,6	0	0
			4 часа	0,84	4,5±1,0	0	

Примечание: для всех значений критерия W - p>0.05 (параметры имеют нормальное распределение).

действием в отношении факторов врож- 5. О'Брайн Р.Д. Токсические эфиры денного иммунитета экспериментальных животных, вызывая лейкопению и угнетение функциональной активности нейтрофилов и макрофагов (снижение адгезивной, фагоцитарной и бактерицидной активности).

Список литературы

- 1. Голиков С.Н., Розенгарт В.И. Холинэстеразы и антихолинэстеразные 8. вещества. Л.: Медицина. 1964. 382 с.
- 2. Каган Ю.С. Глобальное значение пестицидов и особенности их биологического действия // Профилактическая токсикология / Под. ред. Н.Ф. Измерова. М: Центр международных 9. проектов. 1984. 2. Ч.1. С. 123-134.
- 3. Лабораторные методы исследования в клинике (справочник под ред. В.В. Меньшикова). М., «Медицина». 1987. 365 с.
- 4. Машковский М.Д. Лекарственные средства. М. «Медицина». 2000.

- кислот фосфора. М.: Мир. 1964. 278 с.
- 6. Приказ Министерства здравоохранения Российской Федерации № 267 от 19.06.2003 «Правила лабораторной практики в Российской Федерации».
- 7. Розенгарт В.И., Шерстобитов О.Е. Избирательная токсичность фосфорорганических инсектоакарицидов. Л.: Наука. 1978. 174 с.
- Сидоренко Г.И., Федосеева В.Н., Щарецкий А.Н., Пристовская Л.В. Иммунотоксикология важнейшее направление исследований в гигиене окружающей среды // Гигиена и сан. 1989. № 3. C. 7-11.
- Хаитов, Р.М. Экологическая иммунология / Р.М. Хаитов, Б.В. Пинегин, Х.И. Истамов. М. 1995. 219 с.
- 10. Ellman G.L., Courtney K.D., Andres V.Jr., Featherstone R.M. A new and rapid colorimetric determination of acetylcholinesterase activity // Biochem. Pharmocol. 1961. Vol. 7. № 1. P. 88-95.

Assessing the impact of organophosphorus compounds on the factors of innate immunity of mice

T.S. Zaporozhets, L.A. Ivanushko, A.K. Gazha, E.V. Miheev, N.N. Kovalev

The action of organophosphorus compounds (OPC) O-ethyl-S-geksilmetiltiofosfanata on the activity of serum cholinesterase and factors of nonspecific resistance purebred mice has been studied. LD_{so} of O-ethyl-Sgeksilmetiltiofosfanata for neinbrednyh mice after intraperitoneal injection of 12.33 ± 4.05 mg/kg. Inhibition of serum cholinesterase remains within 24 h after injection. Organophosphorus compound has a pronounced immunotoxic effect on the factors of innate immunity, causing leukopenia, inhibition of functional activity of neutrophils and macrophages (decrease adhesive, phagocytic and bactericidal activity).

Key words: organophosphorus compounds, cholinesterase, innate immunity.