Исследование свойств надмолекулярного кластера «алкогольдегидрогеназа-лактатдегидрогеназа» в субклеточных фракциях печени крыс в норме и при токсическом гепатите

А.Г. Соловьёва¹, А.А. Уланова¹, А.К. Мартусевич¹, С.П. Перетягин²

Контактная информация: к.б.н. Соловьева А.Г., sannag5@mail.ru

Показана возможность образования надмолекулярного функционального кластера «алкогольдегидрогеназа-лактатдегидрогеназа» для различных компартментов клеток печени и его участие в молекулярных механизмах реализации метаболического эффекта гепатотоксичного ксенобиотика. Кластер ЛДГпр-АДГпр ответственен за образование в печени таких метаболитов как этанол и лактат, от функционирования кластера ЛДГобр-АДГобр зависит содержание в печени ацетальдегида и пирувата. Преобладание того или иного субстрата играет определяющую роль в усилении или ослаблении токсического действия тетрахлорметана.

Ключевые слова: алкогольдегидрогеназа, лактатдегидрогеназа, фермент-ферментные комплексы, токсический гепатит.

Введение

Известно, что изучению молекулярных механизмов действия очищенных препаратов-ферментов в последние десятилетия уделяется огромное внимание. Однако такой классический подход мало даёт для оценки каталитических свойств ферментов клетки, находящихся в динамическом взаимодействии друг с другом и обуславливающих ее функционирование и поведение [2].

Способность образовывать комплексы характерна для ключевого фермента биотрансформации печени – алкогольдегидрогеназы (АДГ), которая участвует в регуляции отношения НАДН/НАД в клетке, конкурируя с другими НАД-оксидоредуктазами за кофермент. Существуют сведения о взаимодействии АДГ с лактатдегидро-

геназой (ЛДГ) in vitro [14, 20, 22, 23]. Лактатдегидрогеназа как фермент гликолиза играет важную роль в регуляции энергетического обмена клетки [2, 21, 23]. Ранее уже высказывалась гипотеза о связи образованного комплекса ЛДГ-АДГ со структурными компонентами клетки, в частности, с митохондриями [3]. Подобные исследования раскрывают молекулярную сущность функции печени и составляют рациональную основу для разработки новых подходов к профилактике, ранней диагностике и возможности эффективного лечения различных патологических альтераций данного органа.

Поражения печени наблюдаются уже в первые часы после воздействия различных ксенобиотиков [7, 9, 10, 15], к числу которых с высокой степе-

¹ – ФГБУ «ННИИТО» Минздрава России

² – Ассоциация российских озонотерапевтов

нью избирательной гепатотоксичности относится тетрахлорметан (CCl_4). Имеются данные, что в результате введения CCl_4 происходит усиление свободнорадикальных процессов и, как следствие, изменение метаболизма печени, сопровождающееся нарушением активности ферментативных систем [9, 12].

В настоящее время отсутствуют какие-либо представления о роли функционального взаимодействия ЛДГ-АДГ в составе надмолекулярного кластера в молекулярных механизмах поражения печени на модели острого токсического гепатита при однократном действии ксенобиотика.

Целью данной работы явилось исследование каталитических параметров надмолекулярного кластера ЛДГ-АДГ в норме и при токсическом действии гепатотропного ксенобиотика CCl₄.

Материалы и методы

Эксперименты проведены на 105 крысах-самцах линии Wistar массой 180-200 г. Все экспериментальные животные были разделены на следующие группы: 1 группа — интактные животные; 2 группа — контрольные животные после однократного введения растительного масла внутрибрюшинно, забитые на 1, 7 и 14 сутки; 3 группа — опытные животные с токсическим гепатитом, забитые на 1, 7 и 14 сутки. Модель экспериментального токсического гепатита создавали внутрибрюшинным введением 40%-тетрахлорметана в растительном масле в дозе 1,0 мл на 100 г массы однократно.

Животных выводили из эксперимента под эфирным наркозом, печень извлекали, перфузировали охлажденным физиологическим раствором.

Субклеточные фракции ткани печени получали методом дифференциального центрифугирования [13], все процедуры проводили на холоде (0-4°С). Для этого навеску органа (1 г) помещали на поставленную в лёд чашку Петри, измельчали ножницами, переносили в стеклянный гомогенизатор с тефлоновым пестиком (зазор между стенкой гомогенизатора и пестиком составлял 0,2-0,3 мм). Гомогенизирование проводили в течение 30-40 сек в охлаждённой среде выделения (0,25 М раствор сахарозы с 1 мМ ЭДТА, рН 7,4). Конечный объем среды выделения, пошедшей на гомогенизирование всей навески, составил 10 мл. Полученный гомогенат центрифугировали при 200 g 10 мин. Рыхлый осадок, содержащий ядра и неразрушенные клетки, отбрасывали. Надосадочную жидкость центрифугировали на центрифуге Multifuge 1S-R 20 мин при 26000 g. Для исследований использовали супернатант (цитоплазматическая фракция) и осадок, содержащий митохондрии, который ресуспензировали.

Исследование активности ЛДГ и АДГ проводили на спектрофотометре Power Wave XS. Активность лактатдегидрогеназы определяли с использованием в качестве субстрата молочной кислоты (прямая реакция, ЛДГпр) и пировиноградной кислоты (обратная реакция, ЛДГобр) [6]. Определение активности алкогольдегидрогеназы проводили с использованием в качестве субстрата этилового спирта (прямая реакция, АД-Гпр) по методу W.M. Keung, et al. [17] и ацетальдегида (обратная реакция, АДГобр) по методу M. Koivusalo, et al. [18]. Оценку каталитических свойств ферментов в надмолекулярной системе (АДГобр-ЛДГобр и ЛДГпр-АДГпр) проводили путём одновременного внесения в пробу субстратов для ЛДГ и АДГ. Концентрацию белка определяли по методу Лоури в модификации [16].

Результаты исследований обрабатывали с использованием t-критерия Стьюдента с помощью программы Statistica 6.0, Biostat.

Результаты исследований

Полученные результаты показали, что в цитоплазматической фракции печени удельная активность ЛДГпр у интактных и контрольных животных в составе кластера АДГпр-ЛДГпр статистически значимо уменьшилась на 60% и 59%, а АДГпр, наоборот, увеличилась на 89% и 67% соответственно (рис. 1).

Уменьшение активности ЛДГ прямой реакции в цитоплазматической фракции печени на 1-е (на 70%), 7-е (на 42%) и 14-е сутки после поражения (на 60%) по сравнению с контрольными животными способствует накоплению лактата. При этом активизируется протеолиз, усиливается внутриклеточный ацидоз, что, в свою очередь, вызывает повреждение цитомембран. Увеличение количества лактата сопровождается инициацией перекисного окисления липидов и накоплением в жидких средах его продуктов (малонового диальдегида, диеновых и триеновых конъюгатов, гидроперекисей липидов, диенкетонов) [9]. Удельная активность ЛДГпр в цитоплазматической фракции печени крыс с токсическим гепатитом

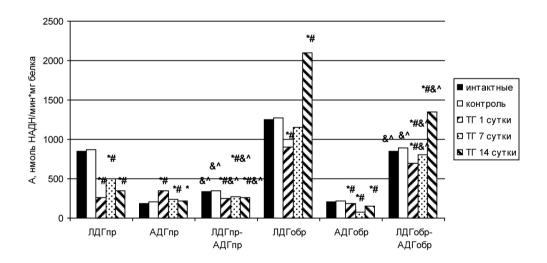


Рис. 1. Активность ЛДГ, АДГ и кластеров АДГ-ЛДГ в прямой и обратной реакциях в цитоплазматической фракции печени у интактных животных и при токсическом гепатите. Примечания:

& – статистически значимые различия при p<0,05 по отношению к группе ЛДГпр, ЛДГобр;

^{^ –} статистически значимые различия при p<0,05 по отношению к группе АДГпр, АДГобр;

^{* –} статистически значимые различия при p<0,05 по отношению к группе «интактные»;

^{# –} статистически значимые различия при p<0,05 по отношению к группе «контроль»; ТГ – токсический гепатит.

на 7-е и 14-е сутки после поражения в составе кластера статистически значимо снизилась на 46% и 26% соответственно (рис. 1).

В цитоплазматической фракции печени отмечено повышение активности АДГпр в составе кластера на 7-е и 14-е сутки после поражения на 12% и 19% соответственно и увеличение активности АДГ в прямой реакции на 1-е (на 67%) и 7-е сутки (на 13%) по сравнению с контрольными животными, что способствует накоплению высокотоксичного ацетальдегида, который в повышенных концентрациях нарушает структуру и функции плазматических мембран [1].

Показано, что в цитоплазматической фракции печени каталитическая активность ЛДГобр у интактных и контрольных животных в составе кластера ЛДГобр-АДГобр уменьшилась на 35%, а АДГобр, наоборот, увеличилась на 74% (рис. 1).

На 1-е и 7-е сутки токсического гепатита в цитоплазматической фракции печени происходило снижение активности лактатдегидрогеназы в обратной реакции по сравнению с контрольными животными на 29% и 11% соответственно. Удельная активность ЛДГобр цитозоля печени в составе кластера при воздействии тетрахлорметана статистически значимо уменьшилась на 1-е сутки на 22%, на 7-е сутки – на 31%, на 14-е сутки – на 36%. Отмечено снижение активности АДГобр на 1-е сутки токсического гепатита на 14%, на 7-е сутки – на 64% и на 14-е сутки – на 32% по сравнению с контрольными животными в цитоплазматической фракции. Удельная активность АДГобр цитозоля печени в составе кластера на фоне воздействия ССІ, возросла на 1-е, 7-е и 14-е сутки в 3, 10 и 9 раз соответственно.

В митохондриальной фракции в составе кластеров АДГпр-ЛДГпр и АД-Гобр-ЛДГобр удельная активность ЛДГпр и ЛДГобр печени интактных и контрольных животных уменьшилась на 59% и на 22% соответственно, каталитическая активность АДГпр увеличилась на 84%, АДГобр повысилась на 53% (рис. 2). Удельная активность ЛД-Гпр и ЛДГобр в митохондриях в составе кластеров при воздействии тетрахлорметана понизились на 1-е сутки на 20% и 18% соответственно, на 7-е сутки – на 45% и 16%, на 14-е сутки – на 52% и 38%. Показано, что активность АДГпр в составе кластера АДГпр-ЛДГпр при токсическом гепатите уменьшилась на 1-е сутки на 33%, на 7-е сутки – увеличилась на 47%, а на 14-е сутки возросла на 38% в митохондриальной фракции печени. На фоне воздействия ССІ, активность АДГобр в составе кластера АДГобр-ЛДГобр повысилась на 1-е, 7-е и 14-е сутки в 4, 8 и 14 раз соответственно (рис. 2).

Полученные результаты показали, что в митохондриальной фракции печени при токсическом гепатите активность ЛДГобр увеличилась на 1-е сутки в 1,3 раза, активность ЛДГобр и ЛДГпр возросла на 7-е сутки в 1,7 и 1,3 раза соответственно, и на 14-е сутки – в 2,7 и 2 раза по сравнению с контрольными животными. Активность АДГобр в митохондриях при действии тетрахлорметана уменьшилась на 1-е, 7-е и 14-е сутки в 1,5; 2 и 3 раза соответственно по сравнению с контролем. Удельная активность АДГпр при воздействии ССІ, возросла на 1-е сутки в 4 раза, на 7-е сутки – в 5 раз, на 14-е сутки – в 7 раз по сравнению с контрольными животными (рис. 2).

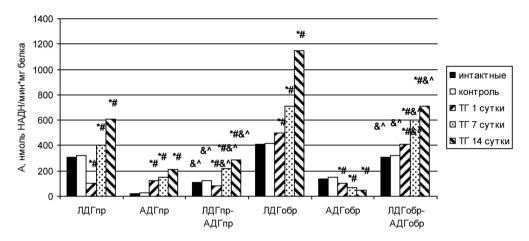


Рис. 2. Активность ЛДГ, АДГ, кластеров АДГ-ЛДГ в прямой и обратной реакциях в митохондриальной фракции печени в норме и при токсическом гепатите. Примечания:

& – статистически значимые различия при p<0.05 по отношению к группе ЛДГпр, ЛДГобр; $^-$ – статистически значимые различия при p<0.05 по отношению к группе АДГпр, АДГобр;

* - статистически значимые различия при p<0,05 по отношению к группе «интактные»;

— статистически значимые различия при p<0,05 по отношению к группе «контроль»;

ТГ – токсический гепатит.

Обсуждение результатов

Дисфункция митохондрий — это начальный этап проявлений гепатотоксичности, а сами митохондрии служат первичной мишенью для токсинов [19].

Уменьшение удельной активности лактатдегидрогеназы в прямой реакции в митохондриальной фракции печени на 1-е сутки после поражения и повышение удельной активности ЛДГобр на все сутки после введения крысам тетрахлспособствуют накоплению рометана лактата и развитию тканевой гипоксии. Увеличение активности АДГпр и снижение АДГобр в митохондриальной фракции печени крыс на 1-е, 7-е и 14-е сутки после воздействия ССІ, вызывают возрастание уровня высокотоксичного ацетальдегида, который ингибирует активность многих ферментов мембран и сыворотки крови [4]. Повышенное содержание ацетальдегида и лактата, которые могут стимулировать синтез коллагена фибробластами, приводит к накоплению соединительной ткани в печени и развитию цирроза, к опухолевому росту и возникновению гепатом [4, 12].

Таким образом, в митохондриальной фракции печени на 1-е, 7-е и 14-е сутки после однократного введения токсического ксенобиотика (тетрахлорметана) возникают изменения активности ЛДГ и АДГ, вследствие чего можно ожидать возрастания концентрации ацетальдегида и лактата, снижения уровня эндогенного этанола и пирувата. Это указывает на существенные нарушения в метаболических реакциях в данном компартменте клетки. Данная биохимическая картина характеризуется выраженным аэробным гликолизом [11].

В результате проведенных исследований установлено, что энзиматические механизмы взаимодействия лактатдегидрогеназы и алкогольдегидрогеназы в норме и при токсическом гепатите состоят в следующем: у контрольных животных реакция лактатдегидрогеназы сдвинута в сторону обратной реакции и характеризуется накоплением лактата и кофермента НАД. В норме количество пирувата в тканях на 2-3 порядка ниже, чем лактата, а сам пируват, подобно ацетальдегиду, легко вступает в химические реакции. Аналогичные реакции отмечаются при токсическом гепатите (преобладание активности ЛДГобр по сравнению с ЛДГпр).

В то же время, наблюдается иная картина в отношении алкогольдегидрогеназы. В норме реакция алкогольдегидрогеназы сдвинута в сторону обратной реакции и характеризуется преобладанием этанола и кофермента НАД. При токсическом гепатите равновесие сдвигается в сторону АДГпр, что сопровождается увеличением количества ацетальдегида и восстановленного НАД. Установлено, что у интактных животных энзиматические механизмы взаимодействия обмена «лактат-пируват» и «этанол-ацетальдегид» направлены в сторону увеличения содержания эндогенного пирувата и этанола в клетке. Это создаёт условия эффективного использования пирувата митохондриями в условиях аэробного синтеза АТФ [8]. В то же время, поддержание оптимальной концентрации ацетальдегида играет важную роль в регуляции работы дыхательной цепи митохондрий [5].

Таким образом, на примере энзимов в гетерогенной системе (интактные крысы, контрольная группа) установ-

лена общая закономерность изменения каталитической активности исследуемых оксидоредуктаз при образовании комплекса. Так, в процессе формирования кластера происходит снижение активности лактатдегидрогеназы, как в прямой, так и в обратной реакциях. Напротив, для АДГ, как в прямой, так и в обратной реакциях и в обратной реакциях, показано увеличение каталитических свойств фермента, в результате чего активность образовавшегося комплекса ЛДГобр-АДГобр больше активности АДГпр-ЛДГпр.

Гепатотоксический ксенобиотик тетрахлорметан вызывает структурнофункциональные изменения метаболических компартментов клеток печени, способствует развитию жировой дегенерации, фиброза, апоптоза, канцерогенеза. Установлено, что токсическое действие CCl₄ связано, в первую очередь, с прооксидантным действием образующихся в процессе его метаболизма свободных радикалов – трихлорметильного и высокореактивного трихлорметилпероксильного [9]. Данное воздействие тетрахлорметана вызывает кластерокинетическое изменение надмолекулярных комплексов ферментов субклеточных органелл.

Кластер ЛДГпр-АДГпр ответственнен за образование в печени таких метаболитов как этанол и лактат, а от функционирования кластера ЛДГобр-АДГобр зависит содержание в печени ацетальдегида и пирувата. При этом преобладание того или иного субстрата играет определяющую роль в усилении или ослаблении токсического действия ксенобиотика.

Таким образом, в результате конформационно-структурных перестроек

образуются кластеры ЛДГпр-АДГпр и ЛДГобр-АДГобр, от соотношения которых будет зависеть соотношение (количество) окисленных и восстановленных форм кофермента в клетке.

Выводы

- 1. В цитоплазматической и митохондриальной фракциях печени при токсическом гепатите на 1-е, 7-е и 14-е сутки после воздействия тетрахлорметана удельная активность лактатдегидрогеназы, как в прямой, так и в обратной реакциях, в составе кластера снижается, а алкогольдегидрогеназы увеличивается.
- 2. Введение крысам тетрахлорметана вызывает изменение каталитических свойств АДГ печени, способствуя снижению удельной активности АДГобр и повышению каталитической активности АДГпр на 1-е, 7-е и 14-е сутки после воздействия ССІ₄ в цитоплазматической и митохондриальной фракциях печени крыс. При токсическом гепатите отмечено уменьшение каталитических свойств ЛДГпр в цитозоле и повышение удельной активности ЛДГобр в митохондриях.

Список литературы

- Ашмарин И.П. Алкогольдегидрогеназа млекопитающих – объект молекулярной медицины // Успехи биологической химии. 2003. Т. 43. С. 3-18.
- Зимин Ю.В., Сяткин С.П., Березов Т.Т. Надмолекулярная регуляция активности некоторых оксидоредуктаз клетки в норме и патологии // Вопросы медицинской химии. 2001. Т. 47. № 3. С. 247-287.
- Зимин Ю.В., Соловьева А.Г. Регуляторная роль надмолекулярного комплекса алкогольдегидрогеназы и лактатдегидрогеназы митохондрий клетки // Бюллетень экспериментальной биологии и медицины. 2009. № 12. С. 644-645.

- Кленова Н.А. Биохимия патологических состояний. - Самара: Изд-во «Самарский университет». 2006. 216 с.
- Корнеев А.А., Комиссарова И.А. О биологическом значении ацетальдегида как клеточного регулятора дыхательной цепи митохондрий // Успехи современной биологии. 1994. Т. 114. № 2. С. 212-221.
- Кочетов Г.А. Практическое руководство по энзимологии. - М.: Высшая школа, 1980. 272 с.
- Михайлова Е.В., Попова Т.Н., Сафонова О.А.
 Каталитические свойства NADP-зависимой малатдегидрогеназы из печени крыс в норме и при экспериментальном токсическом гепатите // Вопросы биологической, медицинской и фармацевтической химии. 2009. № 3. С. 39-43.
- Островский Ю.М., Островский С.Ю. Аминокислоты в патогенезе, диагностике и лечении алкоголизма. Минск: Наука и техника. 1995. 280 с.
- Перетягин С.П., Большухин С.Ю., Мартусевич А.К. Экспериментальная токсикология тетрахлорметана: оценка влияния на систему липопероксидации // Теоретическая и прикладная экология. 2012. № 3. С. 55-59.
- 10. Попова Т.Н., Агарков А.А., Семенихина А.В. Каталитические свойства глутатионредуктазы из печени крысы в норме и при токсическом гепатите // Биомедицинская химия. 2009. № 2. С. 169-176.
- 11. *Ткачук В.А.* Клиническая биохимия. М.: Издательство «ГЕОТАР-МЕД». 2004. 267 с.
- 12. *Тумельян В.А., Аксенов И.В., Кравченко Л.В. и др.* Характеристика острого токсического действия четыреххлористого углерода как модели окислительного стресса // Токсикологический вестник. 2009. № 1. С.12-17.
- Финдлей Дж., Эван У. Биологические мембраны. Методы. - М.: Мир. 1990. 424 с.
- 14. Chaubey A., Gerard M., Singh V.S. Immobilization of lactate dehydrogenase on tetraethylorthosilicate-derived sol-gel films for application to lactate biosensor // Appl. Biochem. Biotechnol. 2001. Vol. 96. № 1-3. P. 293-301.
- 15. Clichici S., Catoi C., Mocan T., et al. Non-invasive oxidative stress markers for liver fibrosis development in the evolution of toxic hepatitis // Acta Physiol. Hung. 2011. Vol. 98. № 2. P. 195-204.
- Dawson J.M., Heatlic P.L. Lowry method of protein quantification. Evidence for Photosensitivity // Anal. Biochem. 1984. Vol. 140. № 2. P. 391-393.

- 17. Keung W.M., Ho Y.W., Fong W.P. Isolation and characterization of shrew liver alcohol dehydrogenase // Comp. Biochem. and Physiol. B. 1989. Vol. 93. № 1. P. 169-173.
- 18. Koivusalo M., Baumann M., Votila L. Evidence for the identity of glu-tathione - derendent formaldehyde dehydrogenase and class III alcoholdehy-drogenase // FEBS Lett. 1989. Vol. 257. № 1. P. 105-109.
- Martin E.J., Racz W.J., Forkert P.G. Mitochondrial dysfunction is an early manifestation of 1,1 dichloroethylene induced hepatotoxicity in mice // J. Pharmacol. Exp. Ther. 2003. Vol. 304. P. 121-129.
- Nicolau E., Méndez J., Fonseca J.J., et al. Bioelectrochemistry of non-covalent immobilized alcohol dehydrogenase on oxidized diamond

- nanoparticles // Bioelectrochemistry. 2012. Vol. 85. P.1-6
- 21. Peretyagin S.P., Martusevich A.K., Solovyeva A.G., et al. Enzymological evaluation of hepatotropic effect of ozone in a subchronic experiment // Bulletin of Experimental Biology and Medicine. 2013. Vol. 154. Iss. 6. P. 789-791.
- 22. Trivedi A., Heinemann M., Spiess A.C., et al. Optimization of adsorptive immobilization of alcohol dehydrogenases // J. Biosci Bioeng. 2005. Vol. 99. Ng 4. P. 340-347.
- 23. Tsai Y.-C., Chen S.-Y., Liaw H.-W. Immobilization of lactate dehydrogenase within multiwalled carbon nanotube-chitosan nanocomposite for application to lactate biosensors // Sensors and Actuators B: Chemical. 2007. Vol. 2. P. 474-481.

Investigation of supramolecular cluster «alcohol dehydrogenase – lactate dehydrogenase» in subcellular fractions of liver healthy rats and animals with toxic hepatitis

A.G. Soloveva, A.A. Ulanova, A.K. Martusevich, S.P. Peretyagin

Possibility of formation of supramolecular functional cluster «alcohol dehydrogenase – lactate dehydrogenase» for various compartment of liver cells and its participation in molecular mechanisms of realization of metabolic effect of a gepatotoxic xenobiotic is shown. Cluster LDH_{dir}-ADH_{dir} is responsible for education in a liver of such metabolites as ethanol and a lactate, from functioning of cluster LDH_{back}-ADH_{back} depends the contents in a liver of acetaldehyde and pyruvate. Prevalence of this or that substratum plays defining role in strengthening or weakening of toxic effect of tetrachlormethane.

Key words: alcohol dehydrogenase, lactate dehydrogenase, enzyme-enzyme complexes, toxic hepatitis.