Динамика некоторых показателей протеомного профиля сыворотки крови как основа оценки эффективности различных инсулинов в лечении медленно прогрессирующего аутоиммунного сахарного диабета

И.М.Грушко¹, И.В.Сарвилина², Ю.С.Макляков³

Сахарным диабетом (СД) в мире страдает 6% населения. При этом СД типа 1 составляет 10-20% [1]. Сегодня в центре внимания находится медленно прогрессирующий аутоиммунный СД взрослых (LADA, тип 1.5), который составляет от 5 до 10 % всех случаев СД типа [2]. Молекулярный анализ эффективности применения инсулинов при медленно прогрессирующем СД является основой для разработки нового направления в клинической фармакологии - персонализированной терапии СД LADA, тип 1.5, которая будет способствовать разработке новых средств его лекарственной профилактики, внедрению эффективных режимов инсулинотерапии.

Цель исследования. Сравнительный анализ динамики некоторых показателей протеомного профиля сыворотки крови на фоне применения инсулинов с различными фармакокинетическими параметрами у пациентов с СД, тип LADA 1.5.

Материалы и методы

В исследование включено 63 пациента (мужчины/женщины: 37/26 человек) с СД, тип LADA 1.5., в возрасте от 35

до 47 лет, с длительностью заболевания 7,8±0,3 года, уровнем среднесуточной гликемии 9,3±3,9 ммоль/л, которым в течение 24 недель проводили инсулинотерапию. Все участники получали инсулин короткого действия - инсулин растворимый человеческий генно-инженерный перед завтраком (7.30), обедом (13.30) и ужином (17.30). В зависимости от того, каким инсулином имитировали базальную секрецию, случайным методом были сформированы 2 группы. 32 человека (І группа) дважды в день (7.00 и 22.00) получали инсулин средней продолжительности действия - суспензию человеческого генно-инженерного инсулина изофана; 31 человек (ІІ группа) получали генно-инженерный аналог человеческого инсулина длительного действия с безпиковым базальным профилем действия инсулин гларгин – 1 раз в день (22.00). Средние суточные дозы инсулинов составили по 16±2 ЕД в каждой группе короткодействующего и по 24±2 ЕД суспензии инсулина изофана (І группа) и инсулина гларгин (II группа). В день включения пациентов в исследование и через 24 недели лечения исследовали уровень глюкозы в крови на автоматическом биохи-

¹ Областная клиническая больница № 1, Ростов-на-Дону

² Медицинский центр «Новомедицина», Ростов-на-Дону

³ Ростовский государственный медицинский университет, Ростов-на-Дону

мическом анализаторе с определением минимальной, максимальной и среднесуточной величин, уровень HbA1c методом спектрофотометрии, концентрацию в крови С-пептида, антител к глутаматдекарбоксилазе (GAD), антител к цитоплазме островковых клеток (ІСА), к инсулину (ІАА), к тирозинфосфатазе (IA2) иммунорадиометрическим метолом. Анализ качественного состава белков сыворотки крови выполнялся на основе MALDI-TOF-TOF-MC (прибор Ultraflex II, Bruker, США) с разделением пептидов и белков сыворотки крови с помощью стандартного набора ClinProt (Bruker, США). Идентификацию пептидного фингерпринта проводили в интегрированной базе данных Mascot Search UK). Биоинформационный (London, анализ молекулярных взаимодействий функциональных групп белков выполнен с помощью компьютерных программ STRING 8.1, STITCH. Статистическую обработку материала исследования проводили с помощью пакета статистических программ "Statistica 6.0". Данные представлены как M±SEM, где M – среднее значение показателя, SEM - стандартная математическая ошибка, р - вероятность допустимой ошибки.

Результаты и их обсуждение

Терапия инсулинами в І группе приводила к достоверному снижению максимального и среднесуточного уровня глюкозы в крови (с $13,2\pm0,9$ до $10,7\pm1,1$ ммоль/л, p<0,001 и с $9,7\pm0,5$ до $7,3\pm0,6$ ммоль/л, p<0,001 соответственно) при наличии тенденции к уменьшению ее минимального уровня (с $5,7\pm0,3$ до $5,1\pm0,3$ ммоль/л, p>0,02). Во ІІ группе отмечено статистически значимое уменьшение минимального, максимального и сред-

несуточного уровня глюкозы в крови (с $5,2\pm0,3$ до $4,4\pm0,3$ ммоль/л, p<0,05; с 12,4±1,2 до 9,9±0,9 ммоль/л, p<0,01 и $c9.9\pm0.4$ до 5.7 ± 0.8 ммоль/л, p<0.001 coответственно). Уровень HbA1c за время лечения снизился в обеих группах (с $10,5\pm0,5$ до $9,2\pm0,5\%$, p<0,01 и с $10,1\pm0,5$ до $8,2\pm0,3$ %, p<0,01, соответственно); при этом во II группе снижение было на 1% более выраженным. После 24 недель введения инсулинов короткого и средней продолжительности действия (І группа) концентрация С-пептида оставалась низкой $(0,4\pm0,03)$ мкг/л до начала и $0,4\pm0,02$ мкг/л после курса терапии, р>0,02), тогда как назначение растворимого инсулина короткого действия и инсулина гларгин (II группа) сопровождалось достоверным увеличением уровня С-пептида в крови (с $0,4\pm0,03$ мкг/л до $0,8\pm0,03$ мкг/л, p<0,01). Уровни антител к GAD и IA2 в крови достоверно снижались в процессе инсулинотерапии у пациентов в І группе (c 1,8±0,06 до 1,5±0,05 Ед/мл, p<0,01 и с 1,5±0,05 до 1,3±0,05 Ед/мл, p<0,01 соответственно) и во II группе (с 1,7±0,04 до 1,3±0,02 Ед/мл, p<0,01 и 1,6±0,05 до 1,2±0,02 Ед/мл, p<0,01 соответственно). Во II группе отмечено статистически значимое снижение уровня ІСА и ІАА (с $1,9\pm0,06$ до $1,6\pm0,06$ Ед/мл, p<0,05 и с 14,5±1,4 до 12,1±1,1 Ед/мл, p<0,05 соответственно), тогда как в І группе обнаружена лишь тенденция к снижению значений этих показателей.

Анализ динамимики некоторых показателей протеомного профиля выявил причины большей эффективности инсулинотерапии с включением инсулина гларгин, связанные с отсутствием экспрессии печеночноклеточного ядерного фактора 4 гамма, фактора роста фибробластов 10, интерферона омега 1. Биоинформационный анализ молекулярной функции белков показал, что их экспрессия, стимулируемая генно-инженерными инсулинами, способствует активации Jak-STAT альтернативного сигнального пути, в рамках которого активируется синтез антител ICA и IAA.

Выводы

Таким образом, сравнительный анализ динамики некоторых показателей протеомного профиля сыворотки крови на фоне применения инсулинов различного происхождения у пациентов с СД, тип LADA 1.5 обнаружил молекулярные причины достоверных различий их эффективности, связанные с различной интенсивностью экспрессии и межмолеку-

лярными взаимодействиями сигнальных белков иммунной системы. Результаты исследования позволяют выделить перспективные мишени для разработки инновационных иммуномодулирующих лекарственных средств для лечения СД, тип LADA 1.5.

Список литературы

- 1. **Дедов И.И., Шестакова М.В.** Сахарный диабет. М.: Универсум Паблишинг, 2003. 456 с.
- 2. **Dunn J.P., Perkins J.M., Jagasia S.M.** Latent Autoimmune Diabetes of Adults and Pregnancy: Foretelling the Future // Clinical Diabetes. 2008. № 26. P. 44.