

## **ЛАБОРАТОРНЫЕ ЖИВОТНЫЕ**

# Оптимизация светлогорских мини-свиней для биомедицинских исследований

#### Н.В.Станкова, Г.Д.Капанадзе

Научный центр биомедицинских технологий РАМН, Московская область

Контактная информация: e-mail: sinayva@yandex.ru

Описана схема усовершенствования существующей популяции светлогорских мини-свиней. На основе отобранного исходного поголовья местного генофонда и геттингенских мини-свиней созданы 5 специализированных линий. Изучена эффективность использования геттингенских хряков в поколениях. Создана база данных по эритроцитарным антигенам групп крови.

Ключевые слова: светлогорские мини-свиньи, стандартизация, группы крови.

Использование мини-свиней в медикобиологических исследованиях в нашей стране началось еще в 1970-х годах. Тогда была создана первая отечественная порода лабораторных мини-свиней Минисибс в экспериментальном хозяйстве Института цитологии и генетики СО РАН академиком РАСХН В.Н.Тихоновым. В 1974 г., когда работа по созданию линии Минисибс была еще не завершена, частично отселекционированная популяция новосибирских свиней была завезена в Научно-исследовательскую лаборатоэкспериментально-биологических моделей АМН СССР (с 2002 г. – Научный центр биомедицинских технологий РАМН). Таким образом, начался процесс селекции светлогорской мини-свиньи. Начали проводить скрещивание гибридов, полученных от ландрасов и вьетнамских свиней с белыми геттингенскими мини-свиньями, завезенных из Германии еще раньше. Полученные гибриды использовались как для разведения «в себе», так и для скрещивания с другой гибридной формой, несущей в себе гены дикого кабана. Подробно история выведения светлогорских мини-свиней была описана [3].

Таким образом, для непрерывного обеспечения лаборатории необходимым материалом для исследований, популяция долгое время была изолирована и разводилась в одинаковых условиях. При этом в популяции по численности чуть более 100 голов, очень сложно было избежать нежелательного инбридинга. Как известно, длительное разведение «в себе» ведет у животных к сужению приспособительных свойств, понижению жизнеспособности и продуктивных качеств. А бессистемный инбридинг проявляется депрессией, которая ведет к ослаблению конституции, утончению

костяка, снижению плодовитости маток и сохранности приплода.

#### Цель.

Целью проведенной работы являлась усовершенствование светлогорских мини-свиней и закладка новых специализированных линий в популяции.

В 2005 г. сотрудниками лаборатории для усовершенствования существующей популяции мини-свиней были поставлены задачи:

- изучить продуктивность и отобрать исходное поголовье для закладки новых специализированных линий;
- создать базу данных по эритроцитарным антигенам в популяции для поддержания генетического разнообразия и принятия оптимальных решений при ведении селекционной работы;
- изучить продуктивные качества животных под контролем групп крови;
- изучить эффективность использования геттингенских хряков в поколениях (освежение крови);
- разработать и экспериментально внедрить приемы и методы селекции 5 линий светлогорских мини-свиней по комплексу признаков (сниженные живая масса и размеры животных) и получить на их основе гибридных пользовательских животных для обеспечения лаборатории материалом для исследований;
- создать 5 специализированных линий, из них 1 – на основе животных местного генофонда и 4 – с использованием геттингенских хряков (освежение крови) при разном числе ветвей в линии и разным уровнем инбридинга;
- провести экспериментальную проверку и изучить эффективность использования новых линий в различных вариантах гибридизации.

Следует отметить, что селекционеры старались брать в основу создания линий классические методы, используемые в племенном свиноводстве. При этом возможности работы с лабораторными мини-свиньями существенно ограничены количеством животных и местом для их содержания. С другой стороны работа упрощена в связи с меньшим количеством селекционируемых признаков, в сравнении с промышленным свиноводством.

#### Материалы и методы

Материалом для исследований послужило половозрелое (возраст 2,5-3 года) поголовье мини-свиней светлогорской популяции (62 гол). Все поголовье было переведено в новый оборудованный виварий с оптимальными условиями содержания и кормления. Конституция животных в значительной степени связана с типом нервной деятельности, которая определяет реакцию животного на условия внешней среды. Это особенно важно при работе с мини-свиньями в лабораторных условиях. Для характеристики животных по репродуктивным качествам использовали материалы первичного зоотехнического учета прошлых лет (до 2005 г.). Для снятия промеров использовали измерительную ленту и палку. Были сняты 6 основных промеров. Продуктивность свиноматок фиксировали при рождении, на 21-й день и при отъеме в 2 мес. Для определения групп крови животные были аттестованы по 26 эритроцитарным антигенам 10 систем групп крови с использованием антисывороток-реагентов, полученных во ВНИИ племенного дела. Для выявления антигенов эритроцитов мини-свиней использовались серологические реакции: прямой агглютинации (PA) и реакция связывания комплемента, называемую реакцией гемолиза (PГ) [4]. Стрессчувствительность определяли галатановым методом.

### Результаты и их обсуждение

На первом этапе было проведено обследование имеющихся животных племенного стада на определение продукНаиболее удовлетворительные животные (62 гол.) имели следующие показатели: средняя живая масса хряков – 38 кг, свиноматок – 45 кг, многоплодие составляло 5,8 поросят в среднем по стаду. Процент выбраковки составил 47,5. Отобранные животные превосходили средние показатели по стаду по многоплодию, сохранности, а также имели низкую скорость роста и живую массу (табл.1).

Таблица 1 Показатели живой массы отобранных мини-свиней

| Возраст              | Живая масса, кг |  |  |  |
|----------------------|-----------------|--|--|--|
| При рождении         | 0,54±0,05       |  |  |  |
| На 21-й день         | 2,87±0,22       |  |  |  |
| В 2 месяца           | 5,68±0,34       |  |  |  |
| В 6 месяцев          | 18,15±0,41      |  |  |  |
| В 12 месяцев         | 25,26±0,29      |  |  |  |
| 36 месяцев и старше: |                 |  |  |  |
| хряки                | 38,84±0,38      |  |  |  |
| свиноматки           | 45,12±0,42      |  |  |  |

тивности и стрессчувствительности для закладки новых лабораторных линий. На втором этапе была проведена жесткая выбраковка стрессчувствительных животных с явными пороками экстерьера и ослабленной конституцией, а также проведен тщательный анализ родословных. Далее были отобраны исходные животные с учетом их положительной сочетаемости. Предпочтение отдавали хрякам и маткам с наименьшими размерами и массой тела, конституционально крепкими, хорошим экстерьером и уравновешенным темпераментом, крепкими конечностями при отсутствии излишней грубости и изнеженности.

Наибольшая интенсивность роста у светлогорских мини-свиней наблюдается до полового созревания, затем темп роста их значительно замедляется. Свиньи продолжают расти и после полового созревания, которое наступает в 4-5 месячном возрасте. Рост хряков и свинок продолжается до трехлетнего возраста. Лабораторные мини-свиньи разных линий отличаются по весовым характеристикам и по темпу роста в разные периоды онтогенеза. У светлогорских мини-свиней хряки весят значительно меньше, чем свинки. Двухлетний хряк весит 28-32 кг, а свинка этого же возраста весит 37-40 кг. Это связано с интенсивным отбором, направленным на уменьшение размеров и живой массы. Поскольку мужской генотип скорее отвечает на селекцию, то, естественно, у мини-свиней вес самцов меньше, чем самок, в то время как у производственных пород, которые отбирались на большую массу и большую интенсивность роста, наоборот, вес самцов больше, чем самок. Такова специфика ответа на селекцию у особей мужского пола.

Учет особенностей экстерьера (рис.1) мини-свиней позволяет оценить их конституциональные качества и отобрать животных, отличаются не-

ятных факторов в лабораторных условиях. Промеры животных приведены ниже (табл. 2).

Животные имели следующие промеры в возрасте 3 лет и старше: высота в холке у хряков 45,3 см, у свиноматок 42,6 см, длина туловища у хряков 70,5 см, у свиноматок 82,3 см, обхват груди за лопатками у хряков 79,4 см, у свиноматок 80,8 см.

Таким образом, была сформирована линия мини-свиней на основе собственного генофонда, отселекционированная по сниженной живой массе, крепкой конституции, хорошим репродуктивным

Таблица 2 Промеры светлогорских мини-свиней

| Промеры, см    | Свинки    | Хряки     |
|----------------|-----------|-----------|
| Высота в холке | 42,6±0,97 | 45,3±0,75 |
| Глубина груди  | 23,3±0,68 | 23,1±0,35 |
| Ширина груди   | 17,5±0,43 | 19,2±0,25 |
| Обхват груди   | 80,8±1,31 | 79,4±2,27 |
| Длина туловища | 82,3±1,55 | 70,5±3,41 |
| Обхват пясти   | 12,2±0,39 | 12,4±0,41 |





Рис.1. Взрослые особи светлогорской популяции мини-свиней: а – хряк, б – свиноматка.

прихотливостью и повышенной сопротивляемостью к действию неблагопри-

качествам, условно ее обозначили как СМС – светлогорская мини-свинья.

Далее животные были аттестованы по 26 эритроцитарным антигенам 10 систем групп крови с использова-

нием антисывороток-реагентов. Результаты исследования приведены в таблице 3.

 ${\rm Taблицa} \ 3$  Частота встречаемости аллелей эритроцитарных антигенов групп крови в светлогорской популяции мини-свиней

| Генетическая система | Аллель | Частота встречаемости |
|----------------------|--------|-----------------------|
|                      | а      | 0,15                  |
| А                    | 0      | 0,62                  |
|                      |        | 0,23                  |
| В                    | а      | 1                     |
| D                    | а      | 0,02                  |
| D                    | b      | 0,98                  |
|                      | aeg    | 0,17                  |
|                      | bdf    | -                     |
| E                    | bdg    | 0,10                  |
|                      | def    | 0,17                  |
|                      | deg    | 0,56                  |
| F                    | а      | 0,77                  |
| '                    | b      | 0,23                  |
| G                    | a      | 0,08                  |
| ď                    | b      | 0,92                  |
|                      | a      | 0,35                  |
| Н                    | b      | 0,04                  |
|                      | ·      | 0,61                  |
|                      | bf     | 0,27                  |
| K                    | ae     | 0,17                  |
| K                    | aed    | 0,48                  |
|                      | aeg    | 0,08                  |
|                      | agi    | 0,16                  |
|                      | bdfi   | 0,08                  |
| L                    | bcgi   | 0,58                  |
|                      | adi    | 0,04                  |
|                      | adik   | 0,14                  |
| M                    | a      | 0,02                  |
|                      | •      | 0,98                  |

Группы крови, благодаря кодоминантной форме наследования, без рецессивных форм представляют собой удобную генетическую модель для изучения влияния на наследственную структуру организма, внутрипородных популяций и пород таких методов селекции, как линейное разведение, инбридинг, скрещивание. Таким разведением под контролем групп крови можно достичь большей однородности внутри линий и в то же время большего различия между линиями и семействами. Селекция животных в определенном направлении приводит к увеличению частоты встречаемости отдельных аллелей групп крови и уменьшению других, что свидетельствует об их сцеплении с признаками продуктивности животных.

В результате проведенных исследований светлогорской популяции минисвиней были выявлены следующие аллели по 10 системам групп крови.

- Система группы крови А представлена аллелями с частотой встречаемости: Аа 0,15; Ао 0,62; А. 0,23. До сих пор эта система остается одной из наименее ясных. Антиген А свиней имеет определенное иммунологическое сходство с антигенами А у человека, Ј у КРС, R у овец.
- В-система представлена только одним из двух аллелей, а именно Ва с частотой 1,00. Это соответствует аналогичному показателю минисибсов.
- Диаллельная D-система также представлена аллелем Db с частотой 0.98 и Da 0.02. У минисибсов тоже присутствует аллель Da 0.295.
- Полиаллельная, самая сложная Е-система, представлена в популяции пятью основными аллелями: aeg 0,17; bdg 0,10; deg 0,56; def 0,17; bdf 0,00. Аллель Edeg имеет самую боль-

шую встречаемость в Е-локусе, что характерно для закавказского и среднеазиатского подвидов дикого кабана. Очень широкое распространение у диких и домашних свиней аллеля Ebdgkmps свидетельствует об их высокой адаптивной ценности. В светлогорской популяции концентрация аллеля Ebdgkmps составила 0,08.

- Диаллельная F-система ставлена двумя аллелями: Fa - 0,77; Fb -0,23. Практически все подвиды дикого кабана (за исключением дальневосточных кабанов) мономорфны по аллелю Fb. Аллель Fa довольно часто встречается у домашних свиней азиатского происхождения и у европейских пород, выведенных с их использованием. При изучении Минисибс было установлено генетическое сцепление локуса I, контролирующего эпистатичную белую пигментацию кожи и волосяного покрова у свиней, с локусом системы F групп крови при расстоянии между ними 16,7 сМ. Локус белой масти расположен на расстоянии 49,7 сМ от центромеры хромосомы № 17.
- Диаллельная G-система представлена двумя аллелями: Ga 0,08; Gb 0,92. У минисибсов большей концентрацией обладает аллель Gb 0,668.
- Полиаллельная Н-система представлена следующими аллелями: На 0,35; Нь 0,04; Н. 0,61. У минисибсов преобладает аллель Нь 0,589, аллель Н. отсутствует. Исследования по изучению связи групп крови с толщиной шпика [1, 2, 7] показали, что генотип На/. оказался связанным с более низкой толщиной шпига. Также изучена связь генотипов На/. и Н./. со стрессчуствительностью. В светлогорской популяции концентрация их составила 0,35 и 0,61 соответственно.

- Полиаллельная К-система представлена следующими аллелями: Kbf – 0,27; Kae – 0,17; Kaed – 0,48; Kaeg – 0,08.
- Полиаллельная L-система представлена следующими аллелями: Lagi 0,16; Lbdfi 0,08; Lbcgi 0,58; Ladi 0,04; Ladik 0,14. Самая большая концентрация наблюдается по аллелю Lbcgi. Такая концентрация характерна для европейского подвида дикого кабана. Аллель Lbdfi, по данным В.Н. Тихонова, С.В. Никитина [5], связан с высокой жизнеспособностью. В светлогорской популяции концентрация его составила 0,08.
- Полиаллельная М-система представлена двумя аллелями: Ма 0,02;
   М. 0,98. Уровень гомозиготности при этом в популяции составлял 0,64.

После тщательного анализа полученных данных было принято решение о необходимости проведения приема «освежения крови» светлогорской популяции путем скрещивания их с мини-свиньями другого разведения. Для этих целей были выбраны геттингенские минисвиньи (рис.2) и были завезены 3 хряка и 3 свиноматки.

Животные имели живую массу при рождении 0,45 кг; в полгода – 9-11 кг; в 2 года и старше 30-35 кг. Животные имели белую масть, уравновешенный темперамент и хорошую конституцию.



Рис. 2. Геттингенская мини-свинья.

Лучших по плодовитости, экстерьеру и конституции светлогорских маток скрещивали с геттингенскими хряками. Помесей первого поколения оценивали по экстерьеру, сохранности, стрессустойчивости, росту и развитию. Помесей первого поколения после оценки их наследственных качеств снова скрещивали со светлогорскими мини-свиньями согласно принятой в лаборатории схеме.

Выращенных животных с кровностью геттингенских мини-свиней 25 и 12,5% разводили в желательном типе. Это дало некоторые результаты: несколько снизилась живая масса при рождении и к отъему. Для дальнейшего закрепления желательных качеств использовали индивидуальный подбор и умеренный инбридинг на геттингенских хряков. При этом для спаривания были отобраны здоровые, конституционально крепкие животные. Были получены несколько выдающихся хряков и свиноматок с кровностью геттингенских мини-свиней 28,14% и 15,63%. Таким образом, вначале селекционной работы были заложены 3 генеалогические линии на основе геттингенских хряков в светлогорской популяции, условно их обозначили Ст, Вс и С3, а при получении улучшенных животных были определены несколько ветвей в каждой линии (в промышленном свиноводстве их называют заводскими линиями).

В свою очередь, геттингенские свиноматки были скрещены со светлогорскими хряками по той же схеме. Полученное потомство от 2 свиноматок оказалось нежизнеспособным, при смене хряка результат был тот же. В дальнейшем эти свиноматки были выбракованы. Лишь от одной геттингенской свиноматки удалось получить нескольких поросят в сочетании с двумя светлогорскими хряками. Далее схему скрещивания не меня-

ли. Таким образом, было сформировано 1 семейство условно его обозначили С8.

На данном этапе для контроля селекционного процесса животные с различной кровностью геттингенских мини-свиней были аттестованы 26 эритроцитарным антигенам 10 систем групп крови с использованием антисывороток-реагентов, полученных так же во ВНИИ племенного дела. Для выявления антигенов эритроцитов мини-свиней использовались те же серологические реакции.

Проведенные исследования светлогорской популяции мини-свиней дали следующие результаты.

- Система группы крови А: частота встречаемости аллеля Ао снизилась в 2,5 раза, а аллеля А. увеличилась в 2,5 раза.
- В-система осталась без изменений и представлена только одним из двух аллелей, а именно Ва с частотой 1,00.
- D-система: незначительные изменения.
- Полиаллельная Е-система: выявлен аллель Ebdf, который не встречался раньше, частота его встречаемости составила 0,01. Частота встречаемости аллеля Edeg снизилась в 1,5 раза. По остальным аллелям изменения были не значительными.
- F-система: частота встречаемости аллелей практически не изменилась.
- G-система: частота встречаемости аллеля Ga увеличилась в 1,9 раз.
- Полиаллельная H-система: частота встречаемости аллеля Hb увеличилась в 8 раз, а аллеля H. снизилась в 2,2 раза.
- Полиаллельная К-система: частота встречаемости аллеля Кае увеличилась в 2,6 раз, по остальным аллелям различия были незначительны.

- Полиаллельная L-система: частота встречаемости аллеля Ladi увеличилась в 3,3 раза, а аллеля Ladiк снизилась в 3,5 раза. По остальным аллелям изменения были незначительны.
- Полиаллельная М-система: выявлен аллель Md с частотой встречаемости 0,03, который раньше не встречался.

Уровень гомозиготности в популяции при этом составлял 0,51.

Таким образом, предложенная схема скрещивания существенно «освежила» имеющуюся генетическую структуру животных и сохранила широкий полиморфизм по эритроцитарным антигенам групп крови. Выровняла уровень гомозиготности, т.е. определила равное наличие гомозиготных и гетерозиготных форм в генофонде. Иммуногенетический анализ животных позволит в дальнейшем вести наиболее целесообразный подбор и отбор.

Далее нами была изучена динамика роста поросят и воспроизводительные качества свиноматок с кровностью геттингенских мини-свиней по группам крови.

Особенность исследования заключалась в выявлении связи между высоким многоплодием свиноматок и низкими показателями живой массы поросят на 21-й день и в 2 мес. по группам крови. По всем показателям продуктивности различия между генотипами были проанализированы статистически. Показатели представлены в табл. 4.

Из анализа данных таблиц 4 и 5 следует, что по системе А лучшей жизнеспособностью обладали поросята, полученные от свиноматок с генотипом Аа/., при этом многоплодие этих свиноматок в данной системе было самым низким. Основное количество свиноматок имело генотип Ао/. и обладало хорошими показателями по многоплодию и сохранности

Таблица 4 Многоплодие свиноматок и количество поросят на 21-й день и в 2 месяца в зависимости от групп крови

|    |                 |                    | Количество поросят, гол.       |      |          |                       |          |      |          |      |
|----|-----------------|--------------------|--------------------------------|------|----------|-----------------------|----------|------|----------|------|
|    | ема групп,      | Кол-во<br>свинома- | всех при рождении в т.ч. живых |      |          | на 21-й день в 2 мес. |          |      |          |      |
| 16 | енотип          | ток, гол.          | M±m                            | Cv,% | M±m      | Cv,%                  | M±m      | Cv,% | M±m      | Cv,% |
|    | o/.             | 11                 | 7,3±0,48                       | 21,5 | 6,0+0,55 | 30,1                  | 5,4+0,69 | 41,7 | 4,3±0,84 | 64,4 |
|    | ./.             | 1                  | 3                              |      | 3        |                       | 3        |      | 3        |      |
| Α  | o/a             | 2                  | 8,0±1,0                        | 17,6 | 4,5±2,5  | 78,7                  | 3,5±1,5  | 60,6 | 3,5±1,5  | 60,6 |
|    | a/.             | 5                  | 6,4±0,67                       | 23,4 | 6,4±0,67 | 23,4                  | 6,0±0,46 | 39,2 | 6,0±0,85 | 39,2 |
| В  | a/a             | 19                 | 6,9±0,85                       | 26,1 | 5,8±0,84 | 37,1                  | 5,3±0,51 | 42,8 | 4,6±0,59 | 55,7 |
|    | b/b             | 18                 | 6,9±0,46                       | 27,9 | 5,8±0,52 | 37,8                  | 5,2±0,55 | 44,4 | 4,6±0,62 | 56,9 |
| D  | a/b             | 1                  | 7                              |      | 7        |                       | 6        |      | 6        |      |
|    | aeg/deg         | 6                  | 7,0±0,58                       | 20,1 | 5,8±0,87 | 36,9                  | 5,8±0,87 | 36,9 | 4,3±1,23 | 70   |
|    | aeg/def         | 4                  | 6,5±1,26                       | 38,8 | 6,5±1,26 | 38,8                  | 6,5±1,26 | 38,8 | 6,5±1,26 | 38,8 |
| E  | bdg/deg         | 2                  | 7,0±1,0                        | 20,2 | 6,0±2,01 | 47,2                  | 6,0±2,01 | 47,2 | 4,5±2,51 | 78,7 |
| _  | deg/deg         | 2                  | 4,5±1,5                        | 47,1 | 4,5±1,5  | 47,1                  | 4,0±2,01 | 70,8 | 4,0±2,01 | 70,8 |
|    | deg/def         | 4                  | 8,5±0,65                       | 15,2 | 5,5±1,32 | 47,6                  | 4,0±1,23 | 61,3 | 3,3±0,86 | 51,8 |
|    | aeg/bdf         | 1                  | 7                              |      | 7        |                       | 6        |      | 6        |      |
|    | b/b             | 1                  | 6                              |      | 6        |                       | 5        |      | 0        |      |
| F  | a/b             | 10                 | 7,0±0,60                       | 27,1 | 5,7±0,74 | 41,4                  | 5,4±0,83 | 48,7 | 5±0,87   | 55,1 |
|    | a/a             | 8                  | 7,0±0,73                       | 29,6 | 5,9±0,77 | 36,8                  | 5,1±0,72 | 39,8 | 4,8±0,70 | 41,3 |
| G  | b/b             | 13                 | 6,9±0,55                       | 28,7 | 5,5±0,66 | 43,1                  | 5,0±0,72 | 51,6 | 4,5±0,81 | 64,4 |
| G  | a/b             | 6                  | 7,0±0,73                       | 25,6 | 6,3±0,67 | 25,9                  | 5,8±0,54 | 22,9 | 4,8±0,75 | 38,1 |
|    | a/b             | 1                  | 6                              |      | 6        |                       | 5        |      | 0        |      |
| н  | a/.             | 13                 | 7,1±0,58                       | 29,6 | 5,9±0,65 | 39,5                  | 5,4±0,71 | 47,6 | 5,0±0,74 | 53,1 |
|    | ./.             | 5                  | 6,8±0,66                       | 21,8 | 5,4±0,92 | 38,3                  | 5,0±0,77 | 34,6 | 4,6±0,75 | 36,3 |
|    | aedg/<br>aedg . | 73                 | 5,7±0,33                       | 10,1 | 5,0±0,58 | 20,1                  | 4,7±0,34 | 12,3 | 2,0±1,16 | 100  |
|    | ae/ae           | 3                  | 8,3±0,66                       | 13,9 | 6,3±1,77 | 48,6                  | 5,0±2,31 | 80,1 | 5,0±2,31 | 80,1 |
| К  | ae/bf           | 6                  | 7,0±0,93                       | 32,6 | 6,7±0,76 | 27,8                  | 6,2±0,70 | 27,7 | 5,8±0,79 | 33,4 |
|    | aedg/bf         | 3                  | 8,0±0,58                       | 12,5 | 5,7±1,86 | 56,3                  | 5,3±1,77 | 57,7 | 4,7±1,45 | 53,4 |
|    | aed/aed         | 1                  | 6                              |      | 6        |                       | 6        |      | 6        |      |
|    | aed/bf          | 3                  | 6,0±1,53                       | 44,2 | 4,3±1,33 | 53,5                  | 4,0±1,53 | 66,3 | 4,0±1,53 | 66,3 |
|    | agi/bcgi        | 6                  | 6,2±0,31                       | 12,1 | 5,8±0,48 | 20,2                  | 5,5±0,43 | 19,1 | 4,0±1,07 | 65,3 |
|    | adik/bcgi       | 4                  | 8,0±0,58                       | 14,4 | 6,5±1,26 | 38,8                  | 5,5±1,71 | 62,1 | 5,5±1,71 | 62,1 |
| L  | adi/bcgi        | 5                  | 7,2±1,07                       | 33,2 | 4,8±1,32 | 61,5                  | 4,6±1,40 | 68,1 | 4,4±1,29 | 65,5 |
| _  | bdfi/bcgi       | 2                  | 6,5±3,51                       | 76,2 | 5,5±2,51 | 64,4                  | 4,5±1,5  | 47,1 | 3,5±0,49 | 20,3 |
|    | bcgi/bcgi       | 1                  | 7                              |      | 7        |                       | 7        |      | 7        |      |
|    | agi/agi         | 1                  | 7                              |      | 7        |                       | 6        |      | 6        |      |
| М  | a/.             | 5                  | 6,8±0,86                       | 28,2 | 6,4±0,51 | 17,8                  | 5,8±0,34 | 14,5 | 4,2±1,20 | 63,8 |
|    | ./.             | 14                 | 7,0±0,51                       | 27,4 | 5,6±0,64 | 43,1                  | 5,1±0,69 | 50,8 | 4,8±0,70 | 54,4 |

Таблица 5 Сохранность поросят по генотипам групп крови свиноматок

| Система групп,<br>генотип |           | Vo. 7.00                        | Сохранность поросят, % |                               |                               |                        |  |
|---------------------------|-----------|---------------------------------|------------------------|-------------------------------|-------------------------------|------------------------|--|
|                           |           | Кол-во<br>свинома-<br>ток, гол. | при рож-<br>дении      | от рожде-<br>ния до 21<br>дня | от рожде-<br>ния до 2<br>мес. | от 21 дня<br>до 2 мес. |  |
|                           | o/.       | 11                              | 82,2                   | 73,9                          | 58,9                          | 79,6                   |  |
| Α                         | o/a       | 2                               | 56,3                   | 43,8                          | 43,8                          | 100                    |  |
|                           | a/.       | 5                               | 100                    | 93,8                          | 93,8                          | 100                    |  |
| В                         | a/a       | 19                              | 84,1                   | 76,8                          | 66,7                          | 86,8                   |  |
| D                         | b/b       | 18                              | 84,1                   | 75,4                          | 66,7                          | 88,5                   |  |
|                           | aeg/deg   | 6                               | 82,9                   | 82,9                          | 64,1                          | 74,1                   |  |
|                           | aeg/def   | 4                               | 100                    | 100                           | 100                           | 100                    |  |
| E                         | bdg/deg   | 2                               | 85,7                   | 85,7                          | 64,3                          | 75                     |  |
|                           | deg/deg   | 2                               | 100                    | 88,9                          | 88,9                          | 100                    |  |
|                           | deg/def   | 4                               | 64,7                   | 47,1                          | 38,8                          | 82,5                   |  |
| F                         | a/b       | 10                              | 81,4                   | 77,1                          | 71,4                          | 92,6                   |  |
| Г                         | a/a       | 8                               | 84,3                   | 72,9                          | 68,6                          | 94,1                   |  |
| G                         | b/b       | 13                              | 79,7                   | 72,5                          | 65,2                          | 90                     |  |
| G                         | a/b       | 6                               | 90                     | 82,9                          | 68,6                          | 82,8                   |  |
| Н                         | a/.       | 13                              | 83,1                   | 76,1                          | 70,4                          | 92,6                   |  |
| П                         | ./.       | 5                               | 79,4                   | 73,5                          | 67,6                          | 92                     |  |
|                           | aedg/aedg | 3                               | 87,7                   | 82,5                          | 35,1                          | 42,6                   |  |
|                           | ae/ae     | 3                               | 75,9                   | 60,2                          | 60,2                          | 100                    |  |
| K                         | ae/bf     | 6                               | 95,7                   | 88,6                          | 82,9                          | 93,4                   |  |
|                           | aedg/bf   | 3                               | 71,3                   | 66,3                          | 58,8                          | 88,8                   |  |
|                           | aed / bf  | 3                               | 71,7                   | 66,7                          | 66,7                          | 100                    |  |
|                           | agi/bcgi  | 6                               | 93,5                   | 88,7                          | 64,5                          | 72,7                   |  |
| L                         | adik/bcgi | 4                               | 81,3                   | 68,8                          | 68,8                          | 100                    |  |
|                           | adi/bcgi  | 5                               | 66,7                   | 63,9                          | 61,1                          | 95,7                   |  |
|                           | bdfi/bcgi | 2                               | 84,6                   | 69,2                          | 53,8                          | 77,8                   |  |
| М                         | a/.       | 5                               | 94,1                   | 85,3                          | 61,7                          | 64,6                   |  |
|                           | ./.       |                                 | 80                     | 72,9                          | 68,6                          | 94,1                   |  |

поросят. Разница по всем генотипам недостоверна.

По системе В все поголовье свиноматок гомозиготно – a/a. Эти показатели

характеризуют все маточное поголовье в целом. Многоплодие 6,9, сохранность поросят к отъему -66,7%.

По системе D основное количество

свиноматок имело генотип b/b, генотип a/b был представлен 1 животным (эти данные не учитывались).

По системе Е самое высокое многоплодие было отмечено у животных с генотипом deg/def, но к отъему количество поросят у этих свиноматок было минимальным (сохранность 38,8). У свиноматок с генотипом aeg/def было среднее многоплодие и 100% сохранность поросят к отъему.

По системе F и G свиноматки со всеми возможными генотипами имели практически одинаковые показатели продуктивности. За исключением F b/b, так как этот генотип был выявлен у 1 свиноматки.

По системе Н животные с генотипом а/. превосходили по всем показателям свиноматок с генотипами а/b и ./.. Разница по всем генотипам не достоверна.

По системе К хорошие показатели по многоплодию и сохранности поросят были у свиноматок с генотипами ае/ае, ае/bf и aedg/bf. По плодовитости была обнаружена достоверная разница между свиноматками с генотипами Kaedg/aedg и Kae/ae, при р>0,9. К отъему самая низкая сохранность поросят была у свиноматок с генотипом Kaedg/aedg – 35,1%.

По системе L высокие показатели многоплодия и сохранности поросят были у животных с генотипом adik/bcgi.

По системе M свиноматки с обоими генотипами имели практически одинаковые показатели.

Многими исследователями отмечалось отрицательное влияние на воспроизводительные качества наличие в генотипе аллелей bdg, bdf, def. При этом по данным Тихонова В.Н. с соавт. [6], аллель def связан с пренатальной жизнеспособностью поросят. Лучшими генотипами называют в первую очередь те, которые содержат аллель deg, при нали-

чие которого, в первую очередь, повышалась жизнеспособность поросят и их живая масса при рождении. У свиноматок светлогорской популяции наличие в системе Е аллеля def отмечалось высоким многоплодием — 8,5 гол.

Сложная система L в некоторых исследованиях также оказалась связанной с репродуктивными качествами, выявлено преимущество животных, имеющих в генотипе аллель bdfi, при этом отмечается преимущество гетерозиготного состояния по данному локусу. У свиноматок светлогорской популяции лучшими были животные с генотипом Ladik/bcgi.

Системы А и Н имеют связь между собой и локализованы на одной хромосоме с группами сцепления генов, контролирующих важнейшие ферментативные системы, а также локусом, отвечающим за чувствительность к галотану, может определять различный уровень продуктивности. Так, при наличии в генотипе маток аллеля Аа (Ас, Аw), повышается многоплодие, а при отсутствии аллеля На — жизнеспособность поросят в подсосный период (особенно в условиях промышленной технологии). У свиноматок светлогорской популяции лучшими были животные с генотипами Ао/. и На/..

Нами было поставлена задача по выявлению генотипов животных, которые дают здоровое потомство с минимальной живой массой.

По системе А минимальная крупноплодность была у свиноматок с генотипом а/. – 0,58 кг. К отъему у поросят, полученных от свиноматок с генотипами о/. и а/., живая масса была минимальной.

По системе В все животные гомозиготны (a/a). Эти показатели характеризуют все маточное поголовье в целом. Крупноплодность —  $0,59~\rm kr$ , живая масса поросят к отъему —  $4,6~\rm kr$ .

Таблица 6 Крупноплодность, молочность свиноматок и живая масса поросят при отъеме в зависимости от групп крови

|                |             | при отъеме в зависимости от групп крови  живая масса 1гол., кг |              |      |             |      |          |      |  |
|----------------|-------------|----------------------------------------------------------------|--------------|------|-------------|------|----------|------|--|
| Система групп, |             | Кол-во<br>свинома-                                             | при рождении |      | в 21-й день |      | в 2 мес. |      |  |
| ген            | нотип       | ток, гол.                                                      | M±m          | Сv,% | M±m         | Су,% | M±m      | Cv,% |  |
|                | o/.         | 11                                                             | 0,60±0,03    | 17   | 2,3±0,22    | 31,3 | 4,5±0,59 | 43,6 |  |
|                | ./.         | 1                                                              | 0,5          |      | 2,5         |      | 5,6      |      |  |
| Α              | o/a         | 2                                                              | 0,62±0,01    | 2,2  | 3,2±0,25    | 10,9 | 5,0      | 0    |  |
|                | a/.         | 5                                                              | 0,58±0,07    | 26,9 | 2,1±0,19    | 20   | 4,4±0,39 | 19,9 |  |
| В              | a/a         | 19                                                             | 0,59±0,03    | 18,6 | 2,3±1,5     | 29,1 | 4,6±0,36 | 33,9 |  |
| _              | b/b         | 18                                                             | 0,58±0,03    | 18,9 | 2,3±0,16    | 29,9 | 4,6±0,34 | 34,6 |  |
| D              | a/b         | 1                                                              | 0,7          |      | 2,4         |      | 3,7      |      |  |
|                | aeg/deg     | 6                                                              | 0,56±0,05    | 23,2 | 2,4±0,31    | 32,1 | 4,6±0,34 | 16,7 |  |
|                | aeg/def     | 4                                                              | 0,65±0,06    | 16,9 | 2,6±0,57    | 43,5 | 5,2±0,85 | 32,5 |  |
| _              | bdg/deg     | 2                                                              | 0,59±0,03    | 8,8  | 1,9±0,15    | 11,1 | 4,3±1,3  | 41,4 |  |
| E              | deg/deg     | 2                                                              | 0,60±0,10    | 23,3 | 2,4±0,01    | 2,9  | 5,3±0,02 | 6,6  |  |
|                | deg/def     | 4                                                              | 0,53±0,04    | 13,4 | 2,3±0,22    | 19,1 | 5,1±0,58 | 22,7 |  |
|                | aeg/bdf     | 1                                                              | 0,72         |      | 2,4         |      | 3,7      |      |  |
|                | b/b         | 1                                                              | 0,45         |      | 7,25        |      | -        |      |  |
| F              | a/b         | 10                                                             | 0,59±0,03    | 18,6 | 2,4±0,2     | 26,7 | 5,0±0,39 | 24,8 |  |
|                | a/a         | 8                                                              | 0,60±0,04    | 18,3 | 2,4±0,25    | 29,2 | 4,6±0,36 | 21,7 |  |
| G              | b/b         | 13                                                             | 0,58±0,03    | 20,7 | 2,4±0,22    | 32,9 | 4,9±0,33 | 24,3 |  |
| G              | a/b         | 6                                                              | 0,61±0,04    | 15,7 | 2,3±0,11    | 12,2 | 4,7±0,45 | 23,2 |  |
|                | a/b         | 1                                                              | 0,45         |      | 7,25        |      | -        |      |  |
| н              | a/.         | 13                                                             | 0,57±0,03    | 15,8 | 2,4±0,18    | 28,3 | 5,0±0,32 | 22,8 |  |
|                | ./.         | 5                                                              | 0,66±0,06    | 19,7 | 2,3±0,27    | 26,5 | 4,4±0,48 | 24,3 |  |
|                | aedg/aedg . | 3                                                              | 0,49±0,04    | 1,2  | 1,9±0,28    | 25,3 | 4,2±1,16 | 38,1 |  |
|                | ae/ae       | 3                                                              | 0,63±0,01    | 2,4  | 3,3±0,48    | 24,8 | 5,5±0,34 | 11,1 |  |
| К              | ae/bf       | 6                                                              | 0,59±0,45    | 22   | 2,3±0,15    | 16,1 | 4,5±0,44 | 23,8 |  |
|                | aedg/bf     | 3                                                              | 0,68±0,06    | 15,9 | 2,1±0,49    | 39,5 | 4,4±0,85 | 32,7 |  |
|                | aed/aed     | 1                                                              | 0,7          |      | 2,3         |      | 5        |      |  |
|                | aed/bf      | 3                                                              | 0,5±0,04     | 12   | 2,2±0,03    | 22,2 | 5,5±0,75 | 23,3 |  |
|                | agi/bcgi    | 6                                                              | 0,57±0,06    | 26,3 | 1,8±0,19    | 26,1 | 4,1±0,5  | 27,8 |  |
| L              | adik/bcgi   | 4                                                              | 0,61±0,02    | 7,8  | 3,1±0,39    | 25,1 | 5,0±0,57 | 22,6 |  |
|                | adi/bcgi    | 5                                                              | 0,61±0,05    | 16,6 | 2,4±0,13    | 12,5 | 5,2±0,55 | 23,6 |  |
|                | bdfi/bcgi   | 2                                                              | 0,54±0,04    | 10,6 | 2,6±0,05    | 2,7  | 5,7±0,55 | 1,2  |  |
|                | bcgi/bcgi   | 1                                                              | 0,45         |      | 1,6         |      | 5        |      |  |
|                | agi/agi     | 1                                                              | 0,72         |      | 2,4         |      | 3,7      |      |  |
| М              | a/.         | 5                                                              | 0,52±0,05    | 21,5 | 2,1±0,23    | 24,3 | 5,1±0,28 | 12,2 |  |
|                | ./.         | 14                                                             | 0,61±0,03    | 16,7 | 2,4±0,19    | 29,2 | 4,7±0,33 | 26,2 |  |

По системе D основное количество свиноматок имело генотип b/b, генотип a/b был представлен 1 животным (данные не учитывались).

По системе Е минимальная крупноплодность была у свиноматок с генотипом deg/def. К отъему у поросят, полученных от свиноматок с генотипами bdg/deg и aeg/deg, живая масса была минимальной.

По системе F крупноплодность свиноматок с генотипами а/b и а/а была практически одинаковой. К отъему у поросят, полученных от свиноматок с генотипом, а/а живая масса была минимальной.

По системе G свиноматки с обоими генотипами имели примерно одинаковые показатели.

По системе Н минимальная крупноплодность была у свиноматок с генотипом а/.. К отъему у поросят, полученных от свиноматок с генотипом ./., живая масса была минимальной. По системе К минимальная крупноплодность была у свиноматок с генотипом aedg/aedg. К отъему живая масса поросят, полученных от этих свиноматок, так же была минимальной -4,2 кг. Низкой живой массой обладали поросята, полученные от свиноматок с генотипами ae/bf и aedg/bf.

По системе L минимальная крупноплодность была у свиноматок с генотипом bdfi/bcgi (этот генотип был выявлен только у 2 свиноматок). К отъему у поросят, полученных от свиноматок с генотипом agi/bcgi, живая масса была минимальной.

По системе М минимальная крупноплодность была у свиноматок с генотипом а/.. К отъему у поросят, полученных от свиноматок с генотипом ./., живая масса была минимальной.

Результаты проведенных исследований по изучению роста и развития поросят отражены в таблице 7.



Рис.3 Свиноматка светлогорской популяции с поросятами.

Таблица 7 **Живая масса поросят в разные периоды роста в зависимости от групп крови** 

| Система групп,<br>генотип |           |        | живая масса  |      |             |      |           |      |
|---------------------------|-----------|--------|--------------|------|-------------|------|-----------|------|
|                           |           | кол-во | при рождении |      | в 21-й день |      | в 2 мес.  |      |
| 16                        | нотип     | голов  | M±m          | Cv,% | M±m         | Cv,% | M±m       | Cv,% |
|                           | ./.       | 18     | 614±200      | 13,2 | 2,41±0,14   | 24,2 | 5,06±0,52 | 23,1 |
| Α                         | a/.       | 13     | 610±190      | 24,6 | 2,88±0,49   | 28,5 | 5,36±0,64 | 27,6 |
|                           | o/.       | 4      | 570±70       | 8,8  | 2,28±0,65   | 42,1 | 5,66±0,46 | 19,4 |
| В                         | a/a       | 35     | 600±10       | 13,3 | 2,56±0,11   | 25,8 | 5,24±0,21 | 24,1 |
|                           | b/b       | 31     | 610±90       | 11,5 | 2,62±0,44   | 27,1 | 5,31±0,52 | 22,6 |
| D                         | a/b       | 4      | 540±80       | 11,1 | 2,11±0,23   | 15,7 | 4,81±0,26 | 11,9 |
|                           | aeg/deg   | 15     | 610±40       | 4,9  | 2,73±0,53   | 31,9 | 4,86±0,54 | 24,7 |
|                           | deg/def   | 2      | 610±130      | 16,4 | 3,13±0,7    | 39,6 | 4,26±0,04 | 2,4  |
|                           | deg/deg   | 4      | 580±150      | 8,6  | 2,83±0,23   | 13,8 | 7,42±0,25 | 9,2  |
| _                         | aeg/def   | 6      | 540±50       | 7,4  | 2,41±0,04   | 2,5  | 5,61±0,49 | 1,2  |
| E                         | aeg/bdg   | 3      | 630±80       | 11,1 | 2,11±0,05   | 3,3  | 5,52±0,03 | 1,3  |
|                           | aeg/bdf   | 3      | 620±100      | 16,1 | 1,83±0,23   | 17,5 | 4,33±0,05 | 2,3  |
|                           | bdg/def   | 1      | 620          |      | 1,83        |      | 4,3       |      |
|                           | aef/def   | 1      | 640          |      | 2,5         |      | 3,4       |      |
|                           | a/b       | 27     | 600±100      | 13,3 | 2,59±0,48   | 29,7 | 5,12±0,67 | 29,7 |
| F                         | a/a       | 4      | 580±70       | 8,6  | 2,54±0,48   | 44,5 | 5,83±0,78 | 32,4 |
|                           | b/b       | 4      | 650±10       | 15,4 | 2,41±0,12   | 7,9  | 5,48±0,64 | 27,2 |
|                           | a/b       | 9      | 600±50       | 6,7  | 2,45±0,45   | 28,9 | 5,31±0,59 | 25,7 |
| G                         | b/b       | 22     | 610±100      | 13,1 | 2,67±0,44   | 27,3 | 5,19±0,6  | 26,4 |
|                           | a/a       | 4      | 540±140      | 18,5 | 2,25±0,11   | 7,6  | 5,41±0,05 | 2,1  |
|                           | a/.       | 27     | 590±90       | 11,9 | 2,61±0,45   | 27,9 | 5,14±0,93 | 41,1 |
| Н                         | ./.       | 6      | 600±50       | 6,7  | 2,37±0,41   | 26,1 | 5,17±0,34 | 14,9 |
|                           | a/b       | 2      | 800          | 0    | 2,51        | 0    | 3,41      | 0    |
| К                         | aed/bf    | 19     | 560±10       | 11,1 | 2,48±0,13   | 22,4 | 5,66±0,31 | 24,4 |
| K                         | ae/bf     | 16     | 597±260      | 17,4 | 2,67±0,21   | 31,1 | 4,73±0,23 | 19,2 |
|                           | bcgi/bcgi | 7      | 630±100      | 11,1 | 2,41±0,54   | 35,1 | 4,98±0,65 | 29,3 |
|                           | adik/bcgi | 5      | 600±60       | 8,3  | 3,26±0,45   | 24,9 | 5,18±0,43 | 18,7 |
|                           | bdfi/bcgi | 6      | 630±130      | 15,9 | 2,32±0,16   | 10,3 | 4,85±0,49 | 22,5 |
| L                         | adi/dcgi  | 13     | 570±120      | 15,8 | 2,41±0,12   | 7,9  | 5,49±0,49 | 20,6 |
|                           | bdfi/bdfi | 1      | 580          |      | 2,25        |      | 4,25      |      |
|                           | agi/bdfi  | 1      | 600          |      | 3,16        |      | 8,01      |      |
|                           | agi/agi   | 2      | 620          | 0    | 1,83        | 0    | 4,31      | 0    |
|                           | d/.       | 9      | 610±100      | 13,1 | 2,71±0,54   | 32,9 | 4,81±0,57 | 24,8 |
| M                         | J.        | 13     | 590±40       | 5,1  | 2,72±0,43   | 26,1 | 5,53±0,54 | 22,6 |
| М                         | a/.       | 8      | 560±400      | 58,9 | 2,26±0,34   | 24,3 | 5,67±0,6  | 25,2 |
|                           | ad/.      | 5      | 560±190      | 25,1 | 2,32±0,16   | 10,3 | 4,58±0,46 | 21,4 |

Основной задачей исследований было выявление генотипов, характерных для животных с минимальной массой. При этом для исследования были отобраны только животные с крепкой конституцией.

По системе А наименьшей живой массой при рождении обладали животные с генотипом Ао/., а наибольшей животные с генотипам А./.. Живая масса поросят на 21-й день была минимальной у поросят с генотипом Ао/.. В 2 месяца минимальной живой массой обладали животные с генотипом А./., а наибольшей живой массой обладали животные с генотипом Ао/..

Система В представлена одним генотипом Ва/а. Эти показатели характеризуют весь молодняк в целом, живая масса поросят к отъему составила 5,24 кг.

По системе D в течение всех трех учитываемых периодов роста поросят наименьшей живой массой обладали животные с генотипом Da/b.

По системе Е наименьшей живой массой при рождении обладали поросята с генотипом Eaeg/def, а наибольшей животные с генотипом Eaeg/bdg. Разница по всем генотипам не достоверна. При этом поросята с генотипом aeg/deg имели самый низкий коэффициент вариации 4,9, он был ниже по сравнению с другими в 2-3 раза. Это говорит о хорошей выравненности по живой массе при рождении поросят с данным генотипом. В возрасте 21 дня наименьшей живой массой обладали поросята с генотипом Eaeg/bdf, а наибольшей - животные с генотипом Edeg/def. Разница по всем генотипам не достоверна. В 2 месяца наименьшей живой массой обладали поросята с генотипом Edeg/def, а наибольшей – животные с генотипом Edeg/deg. Достоверна разница была между поросятами с генотипом deg/deg и остальными при p>0,95 и p>0,9.

По системе F наименьшей живой массой при рождении обладали поросята с генотипом Fa/a, а наибольшей животные с генотипом Fb/b. В возрасте 21 дня наименьшей живой массой обладали поросята с генотипом Fb/b, а наибольшей – животные с генотипом Fa/b. В 2 месяца наименьшей живой массой обладали поросята с генотипом Fa/a, а наибольшей – животные с генотипом Fa/b.

По системе G наименьшей живой массой при рождении и на 21-й день обладали животные с генотипом Ga/a. А в возрасте 2-х месяцев наименьшей живой массой обладали животные с генотипом Gb/b, а наибольшей – животные с генотипом Ga/a.

По системе Н наименьшей живой массой при рождении обладали поросята с генотипом Н./., а наибольшей животные с генотипом На/.. В возрасте 21 дня эти показатели были обратными. А в 2 месяца разницы по живой массе между животными обоих генотипов практически не было.

По системе К наименьшей живой массой при рождении и в 21 день обладали животные с генотипом Kaed/bf. Разница не достоверна. В 2 месяца поросята с генотипом Kae/bf имели живую массу на 0,93 кг меньше, чем поросята с генотипом Kaed/bf. Разница достоверна при p>0,9.

По системе L наименьшей живой массой при рождении обладали поросята с генотипом Ladi/dcgi, а наибольшей животные с генотипом Lbcgi/bcgi и Lbdfi/bcgi. В возрасте 21 дня наименьшей живой массой обладали поросята с генотипом Lbcgi/bcgi и Ladi/dcgi, а наибольшей животные с генотипом Ladik/bcgi. В 2 месяца наименьшей живой массой обладали поросята с генотипом Lbdfi/bcgi, а наибольшей — животные с генотипом Ladi/dcgi.

По системе М наименьшей живой массой при рождении и на 21-й день обладали поросята с генотипами Ма/. и Маd/.. Разница не достоверна. При этом поросята с генотипом М ./. имели самый низкий коэффициент вариации 5,1, он был ниже по сравнению с другими в 2 и более раза. Это говорит о хорошей выравненности по живой массе при рождении поросят с данным генотипом. В возрасте 2 месяцев наименьшей живой массой обладали животные с генотипом Маd/., а наибольше животные с генотипом Ма/...

#### Выводы

1. Учитывая, что живая масса новорожденных поросят обратно пропорциональна их количеству в гнезде и связана со способностью поросят адаптироваться к условиям окружающей среды, можно выделить желательные генотипы по некоторым группам крови свиноматок светлогорской популяции.

По системе А: генотип Аа/..

По системе Е генотипы: Eage/deg, Ebdg/deg.

По системе К: генотип Kae/bf. По системе L: генотип Lagi/bcgi.

По системе М: генотип М./..

Животные с такими генотипами сочетают среднее многоплодие, а полученные от них поросята имеют низкую живую массу к отъему и хорошую жизнеспособность. Животных с такими генотипами при дальнейшем разведении не следует выбраковывать.

2. Поросята, имеющие при рождении наименьшую живую массу, росли в дальнейшем также и даже быстрее, чем поросята с наибольшей живой массой. Скорость роста не зависит от живой массы при рождении. Таким образом, живая масса при рождении не влияет на живую массу в более поздние периоды роста.

#### Заключение

Проведенный иммуногенетический анализ светлогорской популяции минисвиней показал широкий полиморфизм по эритроцитарным антигенам групп крови. Мини-свиньи по частоте встречаемости аллелей в отдельных локусах групп крови значительно превосходят обычных домашних свиней, а некоторые аллели даже не встречаются у продуктивных свиней.

Высокий уровень гомозиготности в популяции (0,64) говорит о накоплении рецессивных форм в гомозиготном состоянии, и о степени влияния инбридинга. Очевидно, что в популяции целесообразно проводить подбор пар для получения потомства со средним уровнем гомозиготности по локусам групп крови. Генофонд светлогорских мини-свиней позволяет совершенствовать их в виде специализированных линий, отвечающих необходимым требованиям к лабораторным свиньям для всех областей медикобиологического моделирования.

Подводя итог 5-летней селекционной работе со светлогорской популяцией мини-свиней можно говорить о том, что на данном этапе получены хорошие животные со сниженной живой массой. Мини-свиньи полностью соответствуют требованиям, предъявляемым к лабораторным животным: они живут на ограниченной площади, терпимо относятся к собственным сородичам, размножаются в любые сезоны, не нуждаются в каких-то особых условиях содержания, характеризуются высокой плодовитостью и быстрым созреванием, уход за ними не сложный, а сами животные безопасны для работающих с ними персоналом. Для них характерна крепкая конституция, объемистый костяк, относительно развитая мускулатура, прямые, развитые конечности. Голова объемистая с прямым профилем. Спина ровная, прямая. Уравновешенный темперамент и добрый нрав, животные общительны, сообразительны и любопытны. Они удобны и практичны для проведения экспериментов на крупных млекопитающих. Разведение ведется по 4 основным линиям, в которых выделены несколько ветвей и 1 семейство, в котором также имеются несколько ветвей. Селекция отцовских форм ведется по экстерьеру, стрессустойчивости, качеству приплода и воспроизводительной способности. Материнских форм - по многоплодию, молочности, крупноплодности и выравненности поросят в гнезде. Инбридинг допускается для закрепления желательных генотипов в степени IV-IV и меньше. Установлен генетический полиморфизм по группам крови, изучена связь фенотипа с генотипом и продуктивностью, что позволяет вести целенаправленный отбор и подбор по иммунологической совместимости. Такое разведение позволяет достичь большей однородности внутри линий и в то же время большего различия между линиями и семействами. Начата работа по изучению сочетаемости полученных линий.

#### Список литературы

1. *Гарай В.В., Повзикова Л.Н., Яку- шонок М.С.* Использование факторов групп крови для прогнозирования откор-

мочных качеств свиней / Селекция с.-х. жив-х по технологическим признакам. М., 1987. С.124-129.

- 2. Герасименко В.В. Плахотников А.Г. Репродуктивные качества трех пород в связи с особенностями генотипов по полиморфным системам крови // Тезисы докладов VI съезда украинского общества генетиков и селекционеров им.Н.И. Вавилова. Киев, 1992. Т.1. С.158.
- 3. **Капанадзе Г.Д., Ашуев Ж.А.** Светлогорская популяция мини-свиней // Биомедицина. № 6, 2007. С.70-80.
- 4. Новиков А.А., Романенко Н.И., Семак М.С. Иммуногенетические маркеры и их использование в селекции // Современные аспекты селекции, биотехнологии, информатики в племенном животноводстве. ВНИИплем. М., 1997. С.97-105.
- 5. *Тихонов В.Н., Никитин С.В.* Связь системы L групп крови с многоплодием и жизнеспособностью свиней // Докл. ВАСХНИЛ. 1988. № 10. С.41-45.
- 6. Тихонов В.Н., Солодуха К.В., Бобович В.Е. Связь с продуктивностью и хромосомная локализация системы групп крови Е свиней // Межвузовский сб. научных трудов по пробл. «Свинина». М., 1988. С.20-24.
- 7. **Чернушенко В**. Изучение генофонда стада свиней по полиморфным структурам крови с целью использования его особенностей в селекции / Автореф. дис. канд. биол. наук. Дубровицы, 1970. С-20.

## Optimization of svetlogorskaya minipig population for the biomedical researchers

## N.V.Stankova, G.D.Kapanadze

The scheme of existing population improvement is described. On the basis of the selected initial livestock (by origin, efficiency and exterior) a local genofund and the Gottingen minipigs 5 specialized strains are created. Efficiency was studied by uses Goettingen male pigs in generation. The database on antigens of blood types is created.

Key words: svetlogorskaya minipigs, standartization, types of blood.