ции маркеров перекисного окисления свидетельствует об усилении свободнорадикальных процессов. В печени наблюдалось увеличение активности ГГТ на 209-347 % и снижение концентрации GSH на 35-76%, а в почках – снижение активности ГГТ на 41-63 % и концентрации GSH на 46-63%. Таким образом, введение ФЛ вызывает резкое увеличение ГГТ, единственного фермента, разрушающего глутатион. Это приводит к снижению концентрации GSH и развитию оксидативного стресса. Такое резкое увеличение ГГТ – признак гибели печеночных клеток. Также наблюдалось увеличение активности ГР в печени на 63-132 %, в почках на 28-40 %, активности ГТ в печени на 13-54%, а в почках снижение на 38-214 % и снижение активности ГПО в печени на 209-347 %, в почках – на 41-63 %. На фоне ЛК, обладающей защитным эффектом против свободно-радикальных процессов, наблюдалось меньшее увеличение концентрации ТВАRS и активности ГГТ и меньшее снижение концентрации GSH, активность ферментов (ГР, ГТ и ГПО) близка показателю контрольной группы.

Выводы

Таким образом, введение ФЛ в больших дозах вызывает резкие изменения в системе глутатиона, приводит к развитию оксидативного стресса; на фоне ЛК большинство показателей нормализуются.

Модель патологии кожи для доклинических испытаний препаратов

Д.А.Бондаренко

Пятигорская государственная фармацевтическая академия, Пятигорск

В настоящее время наблюдается прогрессивный рост заболеваемости связанных с нарушением иннервации и трофики кожи, в результате чего в ней могут возникать патологические изменения: шелушение, атрофия рогового слоя, изъязвления и иногда длительно незаживающие трофические язвы. Актуальной проблемой является разработка новых методов лечения этих заболеваний. Для проведения доклинических исследований лекарственных форм наружного применения необходимо использовать адекватные экспериментальные модели патологических состояний кожи.

Цель. Целью данного эксперимента было разработать модель патологии

кожи ступни задних лап на крысах CD при перерезке большеберцового нерва и перевязки подколенной артерии.

Материалы и методы

Эксперимент был произведен на 10 самцах крыс CD. Патологические изменения кожи ступни задних лап у крыс были произведены путем перерезки большеберцового нерва и перевязки подколенной артерии. Для наркоза использовалась смесь кетамин/ксилазин (кетамин 10%-60 мг/кг, ксилазин 2%-10 мг/кг), внутримышечно. На наркотизированном животном подготавливают операционное поле: удаляют шерсть на задней ча-

сти бедра, кожу обрабатывают дезсредством. Животное фиксировалось в спинном положении на хирургическом столике. Кожу обрабатывают 0,5% раствором хлоргексидина биглюконата на 70%-м этаноле. Участок кожи изолировался стерильной марлевой салфеткой и про-

изводился продольный разрез кожи длиной около 3 см. Используя ранорасширитель раздвигали края стенки. Не повреждая других тканей, осторожно, выделяли большеберцовый нерв и фиксировали его безопаснызажимами. Хирургическими ножницами нерв иссекается, после чего части нерва извлекаются из зажимов. Далее осторожно выделя-

лась подколенная артерия и стягивалась лигатурой. В проведения операции во избежание пересушивания операционного поля, периодически его обрабатывали стерильным физ. раствором. По окончании на операционную рану накладывался прерывистый шов. В качестве шовного материала и для лигатур использовалась Ethilon — полифиламентная резорбируемая антимиккробная полиамидная нить. Во время операции использовались только стерильные материалы.

Результаты и их обсуждения

После перерезки большеберцового нерва и перевязки подколенной артерии на следующий день наблюдалось побледнение кожных покровов в области стопы. На 3-5 неделе после проведения операции на подошвенной поверхности стопы стала отмечаться гиперемия и отёк,

как следствие синдрома локального воспалительного ответа. В последующие дни в центре участка поражения возникли очаги отслойки эпидермиса – так называемая белая атрофия кожи. На подошвенной поверхности развивался гиперкератоз. Кожа стоп и голеней теря-

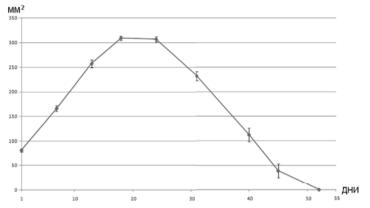


Рис. Динамика площади пораженной кожи по дням (Р<0,01).

ла присущую ей эластичность, становилась сухой, шелушащейся. На 14-16 день после проявления патологии площадь гиперемии кожи и десквамации рогового слоя достигли максимального развития, которая сохранялась на протяжении 7-9 дней. В последующие дни отмечался регресс воспалительных процессов с исходом к 50-52 дню в дистрофически изменённую кожу. Данные о динамике размеров площади пораженной кожи (где 1 — это первый день проявления поражения) представлены в рисунке.

Выводы

Данная модель может быть использована для проведения доклинических испытаний лекарственных средств и исследований фармакологической активности новых химических веществ.