

КЛИНИЧЕСКАЯ ФАРМАКОЛОГИЯ

Исследование сравнительной фармакокинетики широко применяемых гиполипидемических препаратов из группы статинов

А.С. Сивков

Первый МГМУ им. И.М. Сеченова, Минэдравсоцразвития РФ, Москва

Контактаная информация: к.м.н., доцент Сивков Андрей Сергеевич assivkov2010@mail.ru

У 54 здоровых испытуемых исследована сравнительная фармакокинетика широко применяемых гиполипидемических средств из группы статинов. Концентрацию Аторвастатина, активных метаболитов Симвастатина и Ловастатина определяли в плазме крови методом ВЭЖХ с УФ-спектрофотометрическим детектором.

Ключевые слова: фармакокинетика, гиперлипидемия.

В последние годы убедительно показано, что гиполипидемическая терапия существенно снижает не только риск таких осложнений атеросклероза как коронарная смерть, инфаркт миокарда и стенокардия, но и общую смертность [1, 2, 9]. Это стало возможным благодаря применению нового класса гиполипидемических препаратов-статинов, которые подавляют активность 3-гидрокси-3-метилглутарил-коэнзим А-(ГМГ-КоА)-редуктазы, регулирующей скорость синтеза ХС. Вследствие этого снижается пул ХС в клетках печени, увеличивается экспрессия рецепторов к липопротеидам низкой плотности (ЛНП) на поверхности гепатоцитов, стимулируется захват ими частиц ЛНП и липопротеидов очень низкой плотности (ЛОНП) из плазмы крови [1-3, 9, 12, 13].

Сравнительные данные по клинической фармакокинетике статинов представлены в работах [4, 5, 7]. Симвастатин и Ловастатин назначаются в виде неактивных лактоновых форм и в организме гидролизуются с превращением в активные метаболиты. Остальные статины изначально представляют собой фармакологически активные препараты.

Все статины быстро всасываются после приема внутрь (от 30 до 98%), причем максимальная концентрация в крови наступает в пределах 0,5–4 ч. Прием пищи не оказывает существенного влияния на всасывание Симвастатина, увеличивает концентрацию Ловастатина в крови и снижает биодоступность других статинов. Гиполипидемическая активность статинов не зависит существенно от приема их с вечерней пищей или на ночь. После всасывания из же-

лудочно-кишечного тракта до 85% препарата захватывается печенью и лишь 5% активных метаболитов попадает в системный кровоток. Гипохолестеринемический эффект появляется уже через 3 дня после начала лечения, когда устанавливается стабильная концентрация препарата в крови. Максимальный эффект достигается через 4-6 недель. Общий холестерин (ХС) плазмы крови возвращается к исходному уровню через 1 мес. после отмены максимальных доз препарата. Терапевтический эффект довольно стабилен, явлений тахифилаксии при длительном лечении не наблюдается.

Несмотря на уменьшение площади под кривой «концентрация-время» (AUC) при сочетании статинов и секвестрантов желчных кислот (холестирамина или колестипола), эффект такой комбинации препаратов не снижается. Комбинация статинов с холестирамином теоретически обоснована и дает выраженный гиполипидемический эффект даже у больных с тяжелой наследственной гиперхолестеринемией. Некоторые авторы рекомендуют принимать статины по меньшей мере через 4 ч после приема холестирамина или пищевых добавок с богатым содержанием нерастворимых волокон (пектины, овсяные отруби) во избежание фармакокинетического взаимодействия на этапе кишечного всасывания [8, 10, 11]. Не отмечено существенного влияния ощелачивающих препаратов и блокаторов Н₂-рецепторов, назначаемых при повышенной кислотности желудочного сока, фармакокинетику Аторвастатина [10, 11]. За исключением Правастатина, все статины почти полностью связываются с белками плазмы — в основном, альбумином. Поэтому воздействие

активных, не связанных форм статинов на периферические ткани чрезвычайно мало. Печеночная экстракция статинов — более 70%. Лекарственные взаимодействия, обусловленные вытеснением статинов из связи с белками, имеют ограниченное значение. Действие статинов развивается медленно, поэтому временные колебания концентрации несвязанных форм не имеют существенного значения [6, 14].

Целью настоящего исследования являлось проведение сравнительной фармакокинетики этих препаратов на здоровых добровольцах.

Материалы и методы

В качестве исследуемых гиполипидемических препаратов из группы статинов были Аторвастатин, Ловастатин, Симвастатин.

Для проведения сравнительной фармакокинетики в исследование было включено 54 здоровых испытуемых в возрасте от 18 до 45 лет, которые составили III группы. І группа (18 человек) принимала таблетки Липримар 20 мг («Пфайзер», Германия); ІІ группа (18 человек) — Зокор 10 мг («Мерк Шарп Доум», Нидерланды); ІІІ группа — Мевакор 20 мг («Мерк Шарп Доум», Нидерланды).

Все добровольцы в период за 1–14 дней до исследования проходили углубленное врачебное исследование (сбор анамнеза, врачебный осмотр, биохимическое исследование крови, общий анализ крови и мочи).

Прием препаратов осуществлялся *per os* утром в 8:00 в дозе 80 мг (4 таблетки по 20 мг Липримара или Мевакора, 4 таблетки по 10 мг для Зокора). Отбор крови производился из кубитальной вены

в количестве 5 мл, в стеклянные гепаринизированные пробирки, до и спустя 1; 1,5; 2; 3; 4; 6; 8; 12 и 24 ч после приема изучаемых препаратов.

Концентрацию Липримара и активных метаболитов Зокора и Мевакора в плазме крови добровольцев определяли с помощью высокоэффективной жидкостной хроматографии (ВЭЖХ).

Фармакокинетические параметры рассчитывали с помощью программы Кіпетіса $^{\text{TM}}2000$ модельно-независимым методом. Рассчитывались следующие параметры: максимальная концентрация C_{max} — максимальное значение из измеренных; время ее достижения T_{max} — время, при котором измерялась мак-

симальная концентрация; площадь под фармакокинетической кривой — в пределах длительности наблюдений ($\mathrm{AUC}_{0\text{-t}}$) рассчитывали методом трапеций; соотношение $\mathrm{C}_{\mathrm{max}}/\mathrm{AUC}_{0\text{-t}}$.

Полученные экспериментальные данные были статистически обработаны с помощью пакета Systatw5. Рассчитывались следующие статистические параметры: среднее арифметическое значение (Mean), среднее геометрическое значение (GMean), стандартное отклонение среднего результата (SD), стандартная ошибка (SE), коэффициент вариации (CV), медиана (Median). Достоверность различий оценивали при доверительной вероятности 95%.

Таблица 1 Динамика концентрации и фармакокинетические параметры Аторвастатина в плазме крови после приема препарата

Максимальная концентрация, нг/мл // Время определения макс. концетрации после приема препарата, ч	Показатель							
	Mean	GMean	SD	CV	Median	L-95%	Up-95%	
1	26,3	25,1	8,2	31	25,6	-	-	
1,5	26,7	25,8	7,1	27	26,05	-	-	
2	24,8	23,9	7	28	23,95	-	-	
4	19,5	18,7	5,5	28	18,6	-	-	
6	16,2	15,7	4	25	16	-	-	
8	13,3	12,9	3,3	25	12,7	-	-	
12	6,6	-	5,2	78	8,5	-	-	
Фармакокинетические параметры								
Cmax, нг/мл	28,4	27,5	7,5	-	27,4	24,6	84,5	
Т _{тах} , ч	1,3	1,3	0,3	-	1,5	1,2	1,5	
AUC _{0-t} , нг*ч/мл	228,8	216	78,6	-	220,1	189,7	267,9	
C _{max} /AUC _{0-t}	0,13	0,127	0,028	-	0,119	0,116	0,144	

Таблица 2 Динамика концентрации метаболита Симвастатина в плазме крови и фармакокинетические параметры после приема препарата добровольцами II группы

Максимальная концентрация, нг/мл // Время определения макс. концетрации после приема препарата, ч	Показатель							
	Mean	GMean	SD	CV	Median	L-95%	Up-95%	
1	9,6	-	7	73	10,9	-	-	
1,5	16,9	-	7,1	42	18,1	-	-	
2	20,8	20	5,9	29	20	-	-	
4	17,3	16,6	5,2	30	17,8	-	-	
6	11,6	11,1	3,5	31	12	-	-	
8	7,6	-	3,7	48	8,3	-	-	
12	3,6	-	3,7	104	3,9	-	-	
Фармакокинетические параметры								
Cmax, нг/мл	22,8	22,2	4,9	-	23	20,3	68,5	
Т _{max} , ч	2,3	2,2	0,8	-	2	1,9	2,7	
AUC _{₀-} , нг*ч/мл	114	110,2	29,7	-	114,8	99,3	128,8	
C _{max} /AUC _{0-t}	0,205	0,201	0,04	-	0,19	0,185	0,225	

Результаты и их обсуждение

Динамика концентрации Аторвастатина в плазме крови и фармакокинетические параметры Аторвастатина после приема препарата, принимаемого добровольцами I группы, представлена в табл. 1 и на рис.

Как видно из представленных данных, после приема Аторвастатина концентрация препарата достигла максимума через 1,5 ч (26,71±7,1 нг/мл).

Фармакокинетические параметры после приема добровольцами таблеток Аторвастатина были:

$${
m C}_{
m max} - 28,4\pm0,3$$
нг/мл; Т $-1,3\pm0,3$ ч; AUC $_{
m 0-t} - 216,0\pm78,6$ нг*ч/мл;

$$C_{max}/AUC_{0-T} - 0.130 \pm 0.028.$$

Динамика концентрации метаболита Симвастатина в плазме крови и фармакокинетические параметры после приема препарата добровольцами II группы представлена в табл. 2 и на рис.

После приема Симвастатина концентрация метаболита достигла максимума через 2 ч и составила $20,8\pm5,9$ нг/мл. Фармакокинетические параметры после приема добровольцами таблеток Симвастатина были: $C_{\text{max}} = 22,8\pm4,9$ нг/мл; $T=2,3\pm0,8$ ч; $AUC_{0-1}=114,0\pm29,7$ нг*ч/мл; $C_{\text{max}}/AUC_{0-T}=0,205\pm0,040$.

Динамика концентрации метаболита в плазме крови Ловастатина и фармакоки-

Таблица 3 Динамика концентрации метаболита Ловастатина в плазме крови и фармакокинетические параметрыпосле приема препарата добровольцами III группы

Максимальная концентрация, нг/мл // Время определения макс. концетрации после приема препарата, ч	Показатель							
	Mean	GMean	SD	CV	Median	L-95%	Up-95%	
1	1	21,3	20,9	4,5	20,4	-	-	
1,5	1,5	24,9	24,7	3,9	24,8	-	-	
2	2	28	27,7	4,7	27,55	-	-	
4	4	28,8	28,5	4,1	28,6	-	-	
6	6	25,8	25,5	4,4	25,9	-	-	
8	8	22,3	22	4,1	22,25	-	-	
12	12	12	11,9	1,5	12,05	-	-	
Фармакокинетические параметры								
Cmax, нг/мл	29,6	29,3	4,5	-	29,45	26,8	32,4	
Т _{тах} , ч	3,6	3,4	0,9	-	4	3	4,1	
AUC ₀₋₁ , нг*ч/мл	254,9	250,2	49,8	-	253	224,7	285,2	
C _{max} /AUC _{0-t}	0,117	0,117	0,011	-	0,116	0,111	0,124	

нетические параметры после приема препарата добровольцами II группы представлены в табл. 3 и на рис.

После приема Ловастатина концентрация метаболита достигла максимума через 4 ч и составила 28,8±4,1 нг/мл. Фармакокинетические параметры после приема добровольцами таблеток Ловастатина были: $C_{\max} - 29,16\pm4,5$ нг/мл; $T-3,6\pm0,9$ ч; $AUC_{0+} - 254,9\pm49,8$ нг*ч/мл; $C_{\max}/AUC_{0-T} - 0,117\pm0,011$.

Выволы

Таким образом, при сравнительной оценке фармакокинетических параметров исследуемых препаратов установлено, что для Аторвастатина C_{max} составляет $28,4\pm0,3$ нг/мл, через T_{max} $1,3\pm0,3$ ч, при этом AUC_{0-t} составила $216,0\pm78,6$ нг*ч/мл. Для Симвастатина C_{max} составляет $22,8\pm4,9$ нг/мл, через T_{max} $2,3\pm0,8$ ч, при этом AUC_{0-t} составила $114,0\pm29,7$ нг*ч/мл. Для Ловастатина C_{max} составляет $29,16\pm4,5$ нг/мл, через T_{max} $3,6\pm0,9$ ч и при этом AUC_{0-t} составила $254,9\pm49,8$ нг*ч/мл.

Максимальные концентрации (C_{max}) исследуемых лекарственных препаратов практически не отличались друг от друга, в то время как наблюдалось различное максимальное время концентрации препаратов (T_{max}). Тем не менее, по дан-

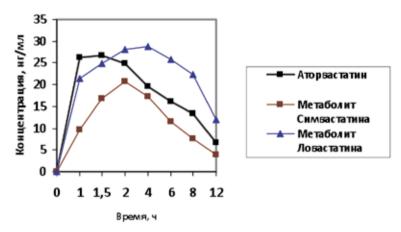


Рис. Концентрация препарата Аторвастатин и метаболитов Симвастатина и Ловастатина в плазме крови здоровых добровольцев.

ным авторов [10, 11], гиполипидемический эффект всех изучаемых препаратов у пациентов достаточно выраженный, с незначительным преобладанием его у препарата Аторвастатина.

Список литературы

- **1. Кукес В.Г.** Клиническая фармакология. М: Гэотармед. 2008.
- 2. **Кукес В.Г.** Метаболизм лекарственных средств; клинико-фармакологические аспекты. М.: Рефарм. 2004.
- 3. Ayanian J.Z., Fuchs C.S., Stone R.M. Lovastatin and rhabdomyolysis. Ann. Intern. Med. 1988. 109: 682–683.
- Corsini A., Bellosta S., Baetta R. et al. New insights into the pharmacodynamic and pharmacokinetic properties of statins. Pharmacol. Ther. 1999. 84: 413–428.
- 5. Desager L.P., Horsmans Y. Clinical pharmacokinetics of the HMG-CoA reductase inhibitors. Clin. Pharmacokinet. 1996. 31: 348–341.
- 6. Hamelin B.A., Turgeon J. Hydrophilicity/lipophilicity: relevance for the

- pharmacology and clinical effects of HMG-CoA reductase inhibitors. Trends Pharmacol. Sci. 2008, 19: 26–37.
- Kivisto K.T., Kantola T., Neuvonen P.J.
 Different effects of itraconazole on the pharmacokinetics of fluvastatin and lovastatin. Br. J. Clin. Pharmacol. 1998. 46: 49–53.
- 8. Lennernas H., Fager G. Pharmacodynamics and pharmacokinetics of the HMG-CoA reductase inhibitors. Clin. Pharmacokinet. 1997. 32: 403–425.
- Long-Term Intervention with Pravastatin in Ischemic Disease (LIPID)
 Study Group. Prevention of cardiovascular events and death with pravastatin in patients with coronary heart disease and a broad range of initial cholesterol levels. N. ENGL. J. MED. 1998. 339: 1349–1357.
- 10. Muck W. Rational assessment of the interaction profile of atorvastatin supports its low propensity for drug interactions. Drugs, 1998, 56 (Suppl. 1): 15 23.
- 11. Richter W.O., Jacob B.G., Schwandt P. Interaction between fibre and lovas-

- tatin. Lancet. 1991. 338: 706.
- 12. Shepherd J., Cobble S.M., Ford J. et al. Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia. N. Engl. J. Med. 1995. 333: 1301–1307.
- 13. Stern R.H., Gibson D.M., Whitfield L.R. Cimetidine does not alter
- atorvastatin pharmacokinetics or LDL-cholesterol reduction. Eur. J. Clin. Pharmacol. 1998, 53: 475–478.
- 14. Wrighton S.A., Vandenbranden M., Ring B.J. The human drug metabolizing cytochromes P450. J. Pharmacokinet. Biopharm. 1996. 24: 475–489.

Comparative study of the pharmacokinetics widely used lipid-lowering drugs of the statin

A.S. Sivkov

The comparative pharmacokinetics of commonly used lipid-lowering drugs of the statin was studied by 54 healthy persons. Concentration atorvastatin, the active metabolites of simvastatin and lovastatin in plasma by HPLC with UV-spectrophotometric detector were determined.

Key words: pharmacokinetics, hyperlipidemia.