Preview

БИОМЕДИЦИНА

Расширенный поиск

Белки теплового шока. Свойства. Роль в адаптации. Методические подходы к определению

https://doi.org/10.33647/2074-5982-16-2-60-67

Полный текст:

Аннотация

Цель данного обзора — обобщение и систематизация данных литературы о свойствах, роли в адаптации и методиках изучения в эксперименте белков теплового шока. Синтез белков теплового шока является универсальным ответом на стресс и играет важную роль в защите клеток от негативных воздействий. Белки теплового шока принимают большое участие в реализации фундаментальных клеточных процессов, и изменение их экспрессии может служить важным диагностическим маркером реакции клетки на повреждения.

Об авторах

Н. Е. Максимович
УО «Гродненский государственный медицинский университет»
Беларусь

Максимович Наталия Евгеньевна, доктор медицинских наук, профессор

230009, Гродно, ул. Горького, д. 80



Е. И. Бонь
УО «Гродненский государственный медицинский университет»
Беларусь

Бонь Елизавета Игоревна, кандидат биологических наук

230009, Гродно, ул. Горького, д. 80



Список литературы

1. Снигирева А.В., Врублевская В.В., Скарга Ю.Ю., Евдокимовская Ю.В., Моренков О.С. Разработка метода очистки белка теплового шока 90 (hsp90) из тканей животных. Современные проблемы науки и образования. 2013;2:67–70.

2. Asea A., Rehli M., Kabingu E. Novel signal transduction pathway utilized by extracellular HSP70: role of toll-like receptor (TLR) 2 and TLR4. J. Biol. Chem. 2002;277:15028–15034.

3. Belli F., Testori A., Rivoltini L. Vaccination of metastatic melanoma patients with autologous tumorderived heat shock protein gp96-pep-tide complexes: clinical and immunologic fi ndings. J. Clin. Oncol. 2002;20:4169–4180.

4. Berwin B., Hart J.P., Pizzo S.V., Nicchitta C.V. Cutting Edge: CD91-Independent Cross Presentation of GRP94(gp96)-Associated Peptides. J. Immunol. 2002;168:4282–4286.

5. Berwin B., Rosser M.F., Brinker K.G., Nicchitta C.V. Transfer of GRP94(gp96)-associated peptides onto endosomal MHC class I molecules. Traffi c. 2002;3:358–366.

6. Binder R.J., Han D.K., Srivastava P.K. CD91: a receptor for heat shock protein gp96. Nat. Immunol. 2000;1:151–158.

7. Binder R.J., Harris M.L., Menoret A., Srivastava P.K. Saturation, competition and specifi city in interaction of heat shock proteins (hsp) gp96, hsp90 and hsp70 with CD11b+ cells. J. Immunol. 2000;165:2582–2587.

8. Castelli C., Ciupitu A.M., Rini F. Human heat shock protein 70 peptide complexes specifi cally activate anti-melanoma T cells. Cancer Res. 2001;61:222–227.

9. Cho B.K., Palliser D., Guillen E. A proposed mechanism for the induction of cytotoxic T lymphocyte production by heat shock fusion proteins. Immunity. 2000;12:263–272.

10. Ciupitu A., Peterson M., O’Donnell C. Immunization with a lymphocytic choriomeningitis virus peptide mixed with heat shock protein 70 results in protective antiviral immunity specifi c cytotoxic T lymphocytes. J. Exp. Med. 1998;187:685–690.

11. Cui Y., Wang M., Yin X., Xu G., Song S., Li M., et al. OsMSR3, a Small Heat Shock Protein, Confers Enhanced Tolerance to Copper Stress in Arabidopsis thaliana. Int. J. Mol. Sci. 2019;3:20–23.

12. Doody A.D.H., Kovalchin J.T., Mihalyo M.A. Glycoprotein 96 can chaperone both MHC class I- and class II-restricted epitopes for in vivo presentation, but selectively primes CD8+ T cell effector function. J. Immunol. 2004;172:6087–6091.

13. Fabczak H., Osinka A. Role of the Novel Hsp90 CoChaperones in Dynein Arms’ Preassembly. Int. J. Mol. Sci. 2019;20:24–29.

14. Gupta A., Bansal A., Hashimoto-Torii K. HSP70 and HSP90 in neurodegenerative diseases. Neurosci. Lett. 2020;18:716–720.

15. Hilf N., Singh-Jasuja H., Schild H. The heat shock protein gp96 links innate and specifi c immunity. Int. J. Hyperthermia. 2002;18:521–533.

16. Levey D.L., Brander C., Srivastava P.K. The potential of heat chock protein-peptide complexes as a therapeutic vaccine. J. HIV Ther. 2005;10:56–59.

17. Li Z. Combination of imatinib mesylate with autologous leukocyte-derived heat shock protein and chronic myelogenous leukemia. Clin. Cancer Res. 2005;11:12–17.

18. Manjili M.H., Henderson R., Wang X.Y. Development of a recombinant HSP110-HER-2/neu vaccine using the chaperoning properties of HSP110. Cancer Res. 2002;62:1737–1742.

19. Massa C., Guiducci C., Arioli I. Enhanced effi cacy of tumor cell vaccines transfected with secretable hsp70. Cancer Res. 2004;64:1502–1508.

20. Mazzaferro V., Coppa J., Carabba M. Vaccination with autologous tumor-derived heat-shock protein gp96 after liver resection for metastatic colorectal cancer. Clin. Cancer. Res. 2003;9:3235–3245.

21. Menoret A., Li Z., Niswonger M.L. An Endoplasmic Reticulum Protein Implicated in Chaperoning Peptides to Major Histocompatibility of Class I is an Aminopeptidase. J. Biol. Chem. 2001;276:33313– 33318.

22. Min H.J., Choe J.W., Chang M.Y., Kim K.S., Lee S.Y., Mun S.K. The expression and correlation of Hsp 70 and Hsp 27 in serous middle ear effusion fl uids of pediatric patients — a preliminary study. Int. J. Pediatr. Otorhinolaryngol. 2017;101:145–149.

23. Mo Z.T., Li W.N., Zhai Y.R., Gao S.Y. The effects of icariin on the expression of HIF-1α, HSP-60 and HSP70 in PC12 cells suffered from oxygen-glucose deprivation-induced injury. Pharm. Biol. 2017;55:848–852.

24. Navaratnam M., Deshpande M.S., Hari-Haran M.J. Heat shock protein-peptide complexes elicit cytotoxic T-lymphocyte and antibody responses specifi c for bovine herpesvirus 1. Vaccine. 2001;19:1425–1434.

25. Novellino L., Parmiani G., Castelli C. A listing of human tumor antigens: March 2004 update. Cancer Immunol. Immunother. 2004;7:78–83.

26. Oh E., Lee B., Choi Y.M. Associations of HeatShock Protein Expression with Meat Quality and Sensory Quality Characteristics in Highly Marbled Longissimus Thoracis Muscle from Hanwoo Steers Categorized by Warner-Bratzler Shear Force Value. Foods. 2019;8:12–18.

27. Oki Y. Experience with heat shock proteinpeptide complex 96 vaccine therapy in patients with indolent non-Hodgkin lymphoma. Cancer. 2007;109:77–83.

28. Shekhawat S.D., Purohit H.J., Taori G.M., Daginawala H.F., Kashyap R.S. Evaluation of host Hsp(s) as potential biomarkers for the diagnosis of tuberculous meningitis. Clin. Neurol. Neurosurg. 2016;140:47–51.

29. Srivastava P. Interaction of heat shock proteins with peptides and antigen presenting cells: chaperoning of the innate and adaptive immune responses. Annu. Rev. Immunol. 2002;20:395–401.

30. Vogen S., Gidalevitz T., Biswas C. Radicicol-sensitive peptide binding to the N-terminal portion of GRP94. J. Biol. Chem. 2002;277:40742–40750.


Для цитирования:


Максимович Н.Е., Бонь Е.И. Белки теплового шока. Свойства. Роль в адаптации. Методические подходы к определению. БИОМЕДИЦИНА. 2020;(2):60-67. https://doi.org/10.33647/2074-5982-16-2-60-67

For citation:


Maksimovich N.Y., Bon E.I. Heat Shock Proteins. Properties. Role in Adaptation. Methodological Approaches to Definition. Journal Biomed. 2020;(2):60-67. (In Russ.) https://doi.org/10.33647/2074-5982-16-2-60-67

Просмотров: 32


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2074-5982 (Print)
ISSN 2074-5982 (Online)