Preview

Journal Biomed

Advanced search

Optimizing the Hormonal Mice Treatment Protocol to Induce Superovulation

https://doi.org/10.33647/2074-5982-16-3-48-53

Abstract

Mice treatment with pregnant mare gonadotropin serum (PMGS) in combination with human chorionic gonadotropin (hCG) is considered to be the “golden standard” of the induced superovulation procedure. The effect of administering the same doses may differ depending on the manufacturer of the preparation. According to our results, the use of PMGS produced by Synchrostim 500 (Ceva Sante Animale, France) and Sergon (Bioveta, Czech Republic) at a hormone dose of 5ME allows ~25 embryos to be obtained from one female. At the same time, the working dose of Follimagum (Mosagrogen, Russia) was not determined. The result comparable with that of Synchrostim 500 and Sergon was achieved using a composite drug Menopur (Ferring, Germany). The study of the influence of mice age on the hormonal response showed 3–4 weeks to be the most productive age, when the maximal number of viable embryos was obtained under a minimal external invasion.

About the Authors

E. S. Savchenko
Scientific Center of Biomedical Technologies of the Federal Medical and Biological Agency of Russia
Russian Federation

Elena S. Savchenko

143442, Moscow region, Krasnogorsk district, Svetlye gory village, building 1



N. S. Ogneva
Scientific Center of Biomedical Technologies of the Federal Medical and Biological Agency of Russia
Russian Federation

Nastasya S. Ogneva

143442, Moscow region, Krasnogorsk district, Svetlye gory village, building 1



S. V. Maksimenko
Scientific Center of Biomedical Technologies of the Federal Medical and Biological Agency of Russia
Russian Federation

Sergey V. Maksimenko, Cand. Sci. (Biol.)

143442, Moscow region, Krasnogorsk district, Svetlye gory village, building 1



M. M. Skripkina
Scientific Center of Biomedical Technologies of the Federal Medical and Biological Agency of Russia
Russian Federation

Maria M. Skripkina

143442, Moscow region, Krasnogorsk district, Svetlye gory village, building 1



N. V. Petrova
Scientific Center of Biomedical Technologies of the Federal Medical and Biological Agency of Russia
Russian Federation

Natalya V. Petrova

143442, Moscow region, Krasnogorsk district, Svetlye gory village, building 1



References

1. Behringer R., Gertsenstein M., Nagy K.V., Nagy A. Administration of Gonadotropins for Superovulation in Mice. Cold Spring Harb. Protoc. 2018;2018(1):24–27. DOI: 10.1101/pdb.prot092403.

2. Chen X., Huang Y., Huang H., et al. Effects of superovulation, in vitro fertilization, and oocyte in vitro maturation on imprinted gene Grb10 in mouse blastocysts. Arch. Gynecol. Obstet. 2018;298(6):1219–1227. DOI: 10.1007/s00404-018-4905-3.

3. Fabian D., Babeľová J., Čikoš Š., Šefčíková Z. Overweight negatively affects outcome of superovulation treatment in female mice. Zygote. 2017;25(6):751–759. DOI: 10.1017/S0967199417000648.

4. Hasegawa A., Mochida K., Inoue H., et al. HighYield Superovulation in Adult Mice by Anti-Inhibin Serum Treatment Combined with Estrous Cycle Synchronization. Biol. Reprod. 2016;94(1):21. DOI: 10.1095/biolreprod.115.134023.

5. Hoogenkamp H., Lewing P. Superovulation in mice in relation to their age. Vet. Q. 1982;4(1):47–48. DOI: 10.1080/01652176.1982.9693838.

6. Huffman S.R., Pak Y., Rivera R.M. Superovulation induces alterations in the epigenome of zygotes, and results in differences in gene expression at the blastocyst stage in mice. Mol. Reprod. Dev. 2015;82(3):207–217. DOI: 10.1002/mrd.22463.

7. Kolbe T., Sheety S., Walter I., Palme R., Rülicke T. Impact of superovulation and mating on the wellbeing of juvenile and adult C57BL/6N mice. Reprod. Fertil. Dev. 2016;28(7):969–973. DOI: 10.1071/RD14372.

8. Stouder C., Deutsch S., Paoloni-Giacobino A. Superovulation in mice alters the methylation pattern of imprinted genes in the sperm of the offspring. Reprod. Toxicol. 2009;28(4):536–541. DOI: 10.1016/j.reprotox.2009.06.009.

9. Taiyeb A.M., Muhsen-Alanssari S.A., Dees W.L., et al. Improvements in oocyte competence in superovulated mice following treatment with cilostazol: Ovulation of immature oocytes with high developmental rates. Biochem. Pharmacol. 2017;137:81–92. DOI: 10.1016/j.bcp.2017.04.019.

10. Takeo T., Nakagata N. Superovulation using the combined administration of inhibin antiserum and equine chorionic gonadotropin increases the number of ovulated oocytes in C57BL/6 female mice. PLoS One. 2015;10(5):e0128330. DOI: 10.1371/journal.pone.0128330.

11. Uysal F., Ozturk S., Akkoyunlu G. Superovulation alters DNA methyltransferase protein expression in mouse oocytes and early embryos. J. Assist. Reprod. Genet. 2018;35(3):503–513. DOI: 10.1007/s10815017-1087-z.

12. Yu B., Smith T.H., Battle S.L., Ferrell S., Hawkins R.D. Superovulation alters global DNA methylation in early mouse embryo development. Epigenetics. 2019;14(8):780–790. DOI: 10.1080/15592294.2019.1615353.

13. Zudova D., Wyrobek A.J., Bishop J., Marchetti F. Impaired fertility in T-stock female mice after superovulation. Reproduction. 2004;128(5):573–581. DOI: 10.1530/rep.1.00333.


Review

For citations:


Savchenko E.S., Ogneva N.S., Maksimenko S.V., Skripkina M.M., Petrova N.V. Optimizing the Hormonal Mice Treatment Protocol to Induce Superovulation. Journal Biomed. 2020;16(3):48-53. (In Russ.) https://doi.org/10.33647/2074-5982-16-3-48-53

Views: 509


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2074-5982 (Print)
ISSN 2713-0428 (Online)