Preview

Journal Biomed

Advanced search

Bioelectrical impedance of the body in rats with monocrotaline-induced pulmonary hypertension

https://doi.org/10.33647/2074-5982-15-1-95-101

Abstract

Wistar rats with monocrotaline-induced pulmonary hypertension were investigated using bioelectrical impedance analysis. Monocrotaline-treated rats compared to sham-treated rats demonstrated significantly lower absolute values of such components of bioelectrical impedance as the reactive resistance (32.9±4.9 Ohm vs. 39.3±5.3 Ohm in the sham control, ρ=0.023) and the phase angle (7.1±0.6º vs. 8.2±0.6º in the sham control, ρ=0.002). The active resistance of the bioelectrical impedance of the lung showed a downward trend in rats having undergone monocrotaline treatment (with a significantly lower value at 150 kHz: 398.9±240.2 Ohm vs. 647.2±270.5 Ohm in the sham control, ρ=0.043). A decrease in the whole-body and pulmonary bioimpedance values under our experimental conditions is shown to result from accumulation of the whole-body or intrathoracic fluid and physiological changes in the tissues during the development of pulmonary arterial hypertension.

About the Authors

N. L. Kolomeyets
Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences
Russian Federation

Cand. Sci. (Phys.- Math.),

167982, Syktyvkar, Kommunisticheskaya str., 24



O. V. Suslonova
Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences
Russian Federation
167982, Syktyvkar, Kommunisticheskaya str., 24


S. L. Smirnova
Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences
Russian Federation
167982, Syktyvkar, Kommunisticheskaya str., 24


I. M. Roshchevskaya
Pitirim Sorokin Syktyvkar State University
Russian Federation

Dr. Sci. (Med.), Corresponding Member of the RAS, 

167001, Syktyvkar, Octjabrskii prospect, 55



References

1. Kolomeyets N.L., Roshchevskaya I.M. Bioelektricheskiy impedans tela normotenzivnyh i gipertenzivnyh stareyuschih krys [Whole body bioelectrical impedance in normotensive and hypertensive senescent rats]. Sovremennye problemy nauki i obrazovaniya [Modern problems of science and education]. 2017. No. 6. (In Russian).

2. Kolomeyets N.L., Roshchevskaya I.M. Elektricheskoe soprotivlenie legkih i mezhrebernyh myshc u krys s arterial’noj gipertenziey [The electrical resistance of the lungs and intercostal muscles in rats with arterial hypertension]. Prakticheskaya Meditsina [Practical medicine]. 2017. No. 2. Pp. 50–55. (In Russian).

3. Kolomeyets N.L., Smirnova S.L., Roshchevskaya I.M. The electrical resistance of the lungs, intercostal muscles, and kidneys in hypertensive ISIAH rats. Biophysics. 2016. Vol. 61, Issue 3. Pp. 498–504. (In Russian).

4. Nikolaev D.V., Smirnov A.V., Bobrinskaya I.G., Rudnev S.G. Bioimpedansnyy analiz sostava tela cheloveka [Bioelectric impedance analysis of human body composition]. Moscow: Nauka, 2009. 392 p. (In Russian).

5. Tornuev Yu.V., Hachatryan R.G., Hachatryan А.P., Mahnev V.P., Osenniy А.S. Electricheskiy impedans biologicheskih tkaney [Electrical impedance of biological tissues]. Мoscow: Izd-vо VZPI. 1990. 155 p. (In Russian).

6. Gomez-Arroyo J.G., Farkas L., Alhussaini A.A., Farkas D., Kraskauskas D., Voelkel N.F., Bogaard H.J. The monocrotaline model of pulmonary hypertension in perspective. Am. J. Physiol. Lung Cell Mol. Physiol. 2012. Vol. 302. No. 4. Pp. L363–369.

7. Hessel M.H., Steendijk P., den Adel B., Schutte C.I., van der Laarse A. Characterization of right ventricular function after monocrotaline-induced pulmonary hypertension in the intact rat. Am. J. Physiol. Heart Circ. Physiol. 2006. Vol. 291. No. 5. Pp. H2424–2430.

8. Hu L., Maslanik T., Zerebeckyj M., Plato C.F. Evaluation of bioimpedance spectroscopy for the measurement of body fluid compartment volumes in rats. Journal of Pharmacological and Toxicological Methods. 2012. Vol. 65. Pp. 75–82.

9. Nopp P., Rapp E., Pfutzner H., Nakesch H., Ruhsam C. Dielectric properties of lung tissue as a function of air content. Phys. Med. Biol. 1993. Vol. 38. Pp. 699–716.

10. Ogata T., Shibagaki T., Kamma H., Yokose T., Iizima T. Alveolar damage: epithelial damage and endothelial damage. Journal of Toxicologic Pathology. 1989. Vol. 2. No. 2. Pp. 223–240.

11. Sanyal S.N., Ono K. Derangement of autonomic nerve control in rat with right ventricular failure. Pathophysiology. 2002. Vol. 8. No. 3. Рp. 197–203.

12. Simonneau G., Galiè N., Rubin L.J., Langleben D., Seeger W., Domenighetti G., Gibbs S., Lebrec D., Speich R., Beghetti M., Rich S., Fishman A. Clinical classification of pulmonary hypertension. J. Am. Coll. Cardiol. 2004. Vol. 43. No. 12. Рp. 5S–12S.

13. Stenmark K.R., Meyrick B., Galie N., Mooi W.J., McMurtry I.F. Animal models of pulmonary arterial hypertension: the hope for etiological discovery and pharmacological cure. Am. J. Physiol. Lung Cell Mol. Physiol. 2009. Vol. 297. No. 6. Рp. L1013–1032.

14. Walter-Kroker A., Kroker A., Mattiucci-Guehlke M., Glaab T. A practical guide to bioelectrical impedance analysis using the example of chronic obstructive pulmonary disease. Nutr. J. 2011. Vol. 10. No. 35. Рp. 1–8.

15. Zink M.D., Weyer S., Pauly K., Napp A., Dreher M., Leonhardt S., Marx N., Schauerte P., Mischke K. Feasibility of Bioelectrical Impedance Spectroscopy Measurement before and after Thoracentesis. Biomed. Res. Int. 2015. Vol. 2015. Article ID 810797. Рp. 1–9.


Review

For citations:


Kolomeyets N.L., Suslonova O.V., Smirnova S.L., Roshchevskaya I.M. Bioelectrical impedance of the body in rats with monocrotaline-induced pulmonary hypertension. Journal Biomed. 2019;(1):95-101. (In Russ.) https://doi.org/10.33647/2074-5982-15-1-95-101

Views: 343


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2074-5982 (Print)
ISSN 2713-0428 (Online)