Preview

Journal Biomed

Advanced search

In vitro Researches into the Biocompatibility of Titanium Alloys with a Modifi ed Surface

https://doi.org/10.33647/2074-5982-17-2-79-87

Abstract

This work presents the results of a comparative in vitro study into the biocompatibility of titanium samples, the surface of which was pre-treated using various methods: milling, machining with acid etching and irradiation with a powerful ion beam (PIB) for creating a relief with the required roughness and the shape of asperities. A study of the effectiveness of attachment and growth of Balb/NIH 3T3 fi broblasts on titanium products with various types of surface treatment demonstrated that irradiation of a titanium surface with a powerful ion beam (PIB) leads to its active colonization with cells having a fl attened and stellate shape, which confi rms their active growth. An assessment of migration of metal impurities from the titanium alloy VT 1-0 was evaluated using the x-ray fl uorescence method

About the Authors

U. E. Еshkulov
The Peoples’ Friendship University of Russia
Russian Federation

Urmat E. Еshkulov 

117198, Moscow, Miklukho-Maklaya Str., 6



V. A. Tarbokov
National Research Tomsk Polytechnic University
Russian Federation

Vladislav А . Tarbokov, Cand. Sci. (Tech.)

634050,  Tomsk, Lenina Avenue, 30

 



S. Yu. Ivanov
The Peoples’ Friendship University of Russia; First Moscow State Medical University named after I.M. Sechenovof the Ministry of Health care of Russia (Sechenov University);
Russian Federation

Sergey Yu. Ivanov, Dr. Sci. (Med.), Prof., Corresponding Member of the Russian Academy of Sciences

117198, Moscow, Miklukho-Maklaya Str., 6 ; 119991, Moscow, Trubetskaya Str., 8/2



N. A. Nochovnaya
All-Russian Scientific Research Institute of Aviation Materials
Russian Federation

Nadezhda А. Nochovnaya, Dr. Sci. (Tech.), Prof. 

105005,  Moscow, Radio Str., 17



A. B. Dymnikov
The Peoples’ Friendship University of Russia
Russian Federation

Аlexandr B. Dymnikov

117198, Moscow, Miklukho-Maklaya Str., 6



R. S. Alymbaev
Scientific and Production Association «Preventive Medicine»
Russian Federation

Ruslan S. Alymbaev, Cand. Sci. (Med.)

720005,  Bishkek, Baytik-Batyra Str., 34



References

1. Andreeva N.V., Bonartsev A.P., Zharkova I.I., Makhina T.K., Myshkina V.L., Kharitonova E.P., Voinova V.V., Bonartseva G.A., Shaitan K.V., Belyavskii A.V. Kul’tivirovanie mezenhimal’nyh stvolovyh kletok myshi na matriksah iz poli-3-oksibutirata [Culturing of mouse mesenchymal stem cells on poly-3-hydroxybutyrate scaffolds]. Kletochnye tekhnologii v biologii i medicine [Cell technologies in biology and medicine]. 2015;2:114–119. (In Russian)].

2. Bonartsev A.P., Bonartseva G.A., Myshkina V.L., Voinova V.V., Mahina T.K., Zharkova I.I., Yakovlev S.G., Zernov A.L., Ivanova E.V., Akoulina E.A., Kuznetsova E.S., Zhuikov V.A., Alekseeva S.G., Podgorskii V.V., Bessonov I.V., Kopitsyna M.N., Morozov A.S., Milanovskiy E.Y., Tyugay Z.N., Bykova G.S., Kirpichnikov M.P., Shai tan K.V. Biosintez sopolimera poli-3-oksibutirat-so-3-oksi-4-metilvalerat shtammom Azotobacter chroococcum 7B [Biosynthesis of poly(3-hydroxybutyrateco-3-hydroxy-4-methylvalerate) by Strain Azotobacter chroococcum 7B]. Acta Naturae. 2016;8(3):85–96. (In Russian)].

3. Bonartsev А.P., Muraev А.А., Deyev R.V., Volkov А.V. Материал-ассоциированная костная резорбция [Material-Associated bone resorption]. Sovremennye tehnologii v medicine [Modern technologies in medicine]. 2018;10(4):26–33. (In Russian)]. DOI: 10.17691/stm2018.10.4.03.

4. Isakova Yu.I., Pushkarev A.I., Tarbokov V.A. Izmerenie sostava i energeticheskogo spektra impul’snogo ionnogo puchka vremyaproletnym metodom vysokogo razresheniya [Measurement of the composition and energy spectrum of a pulsed ion beam using a high-resolution time-of-fl ight method]. Izvestiya Tomskogo politekhnicheskogo universiteta [Bulletin of the Tomsk Polytechnic University]. 2010;316(2):76–79. (In Russian)].

5. Mironov M.M., Grebenshchikova M.M., Starodumova E.V. Issledovanie migracii ionov metallov s zashchitnyh nanostrukturirovannyh pokrytij dlya implantatov [Analysis of migration of metal ions from protective nanostructured coatings for implants]. Vestnik tekhnologicheskogo universiteta [Technological University Bulletin]. 2016;19(20):23–26. (In Russian)].

6. Muraev A.A., Bonartsev A.P., Gazhva Yu.V., Riabova V.M., Volkov A.V., Zharkova I.I., Stamboliev I.A., Kuznetsova E.S., Zhuikov V.A., Myshkina V.L., Mahina T.K., Bonartseva G.A., Yakovlev S.G., Kudryashova K.S., Voinova V.V., Mironov A.A., Shaitan K.V., Ivanov S.Yu. Razrabotka i doklinicheskie issledovaniya ortotopicheskih kostnyh implantatov na osnove gibridnoj konstrukcii iz poli-3-oksibutirata i al’ginata natriya [Development and preclinical studies of orthotopic bone implants based on a hybrid construction from poly(3-hydroxybutyrate) and sodium alginate]. Sovremennye tehnologii v medicine [Modern technologies in medicine]. 2016;8(4):42–50. (In Russian)]. DOI: 10.17691/stm2016.8.4.06.

7. Olkhov A.A., Staroverova O.V., Bonartsev A.P., Zharkova I. I., Sklyanchuk E.D., Iordanskii A.L., Rogovina S.Z., Berlin A.A., Ishchenko A.A. Struktura i svojstva ul’tratonkih volokon poli-(3-gidroksibutirata), modifi cirovannyh nanochasticami kremniya i dioksida titana [Structure and properties of ultra thin poly-(3-hydroxybutirate) fi bers modifi ed by silicon and titanium dioxide particles]. Vse materialy. Enciklopedicheskij spravochnik [All materials. Encyclopedic reference]. 2014;12:2–13. (In Russian)].

8. Paraskevich V.L. Implantacionnye materialy [Implant materials]. V kn.: Dental’naya implantolodiya: Osnovy teorii i praktiki [In The book: Dental implantology: Mentals of theory and practice]. Moscow: Medical Information Agency Publ., 2011:91–96. (In Russian)].

9. Petronyuk Yu.S., Hramcova E.A., Levin V.M., Bonarcev A.P., Voinova V.V., Bonarceva G.A., Muraev A.A., Asfarov T.F., Gusejnov N.A. Razvitie metodov akusticheskoj mikroskopii dlya nablyudeniya processov osteogeneza v regenerativnoj medicine [The development of methods of acoustic microscopy for the observing of the processes of osteogenesis in regenerative medicine]. Izvestiya RAN. Seriya fi zicheskaya [Izvestia RAN. Physical series]. 2020;84(6):799–802. (In Russian)]. DOI: 10.31857/S0367676520060204.

10. Tarbokov V.A., Pavlov S.K., Remnev G.E., Nochovnaya N.A., Eshkulov U.E. Komplexnoe modifi - cirovanie titanovyh splavov [Complex modifi cation of titanium alloys surface]. Metallurg [Journal Metallurgist]. 2018;11:80–84. (In Russian)].

11. Bonartsev A.P., Zharkova I.I., Voinova V.V., Kuznetsova E.S., Zhuikov V.A., Makhina T.K., Myshkina V.L., Potashnikova D.M., Chesnokova D.V., Khaydapova D.D., Bonartseva G.A., Shaitan K.V. Poly(3-hydroxybutyrate)/poly(ethylene glycol) scaffolds with different microstructure: the effect on growth of mesenchymal stem cells. Biotech. 2018;8;328. DOI: 10.1007/s13205-018-1350-8.

12. Lütjering G. Infl uence of processing on microstructure and mechanical properties of (α+β) titanium alloys. Materials Science and Engineering: A. 1998;243(1– 2):32–45.

13. Niinomi M., Boehlert C.J. Titanium alloys for biomedical applications. Advances in Metallic Biomaterials. Berlin, Heidelberg: Springer, 2015:179–213.

14. Oryan A., Alidadi S., Moshiri A., Maffulli N. Bone regenerative medicine: classic options, novel strategies, and future directions. J. Orthop. Surg. Res. 2014;9:1– 27. DOI: 10.1186/1749-799X-9-18.

15. Sefat F., Mozafari M., Atala A. Introduction to tissue engineering scaffolds. Handb. Tissue Eng. Scaffolds, One Elsevier. 2019:3–22. DOI: 10.1016/B978-0-08- 102563-5.00001-0.

16. Sheremetyev V.A., Bonartsev A.P., Dubinskiy S.M., Zhukova Y.S., Bonartseva G.A., Makhina T.K., Akulina E.A., Ivanova E.V., Maria S. Kotlyarova M.S., Prokoshkin S.D., Brailovski S.D., Shaitan K.V. Surface Modifi cation of Ti-Nb-Zr Foams by Poly(3- Hydroxybutyrate). Materials Research Proceedings. 2018;9:74–79. DOI: 10.21741/9781644900017-15.

17. Ur Rahman Z, Pompa L, Haider W. Electrochemical characterization and in vitro bio-assessment of AZ31B and AZ91E alloys as biodegradable implant materials. J. Sci. Mater. Med. 2015;26(8):217. DOI: 10.1007/ s10856-015-5545-9.

18. Volkov A.V., Muraev A.A., Zharkova I.I., Voinova V.V., Akoulina E.A., Zhuikov V.A., Khaydapova D.D., Chesnokova D.V., Menshikh K.A., Dudun A.A., Makhina T.K., Bonartseva G.A., Asfarov T.F., Stamboliev I.A., Gazhva Y.V., Ryabova V.M., Zlatev L.H., Ivanov S.Y., Shaitan K.V., Bonartsev A.P. Poly(3-hydroxybutyrate)/ hydroxyapatite/alginate scaffolds seeded with mesenchymal stem cells enhance the regeneration of critical-sized bone defect. Materials Science and Engineering: C. 2020;114:110991. DOI: 10.1016/j. msec.2020.110991.


Review

For citations:


Еshkulov U.E., Tarbokov V.A., Ivanov S.Yu., Nochovnaya N.A., Dymnikov A.B., Alymbaev R.S. In vitro Researches into the Biocompatibility of Titanium Alloys with a Modifi ed Surface. Journal Biomed. 2021;17(2):79-87. (In Russ.) https://doi.org/10.33647/2074-5982-17-2-79-87

Views: 368


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2074-5982 (Print)
ISSN 2713-0428 (Online)