Methods of Experimental Modeling of Metastasis
https://doi.org/10.33647/2074-5982-17-4-44-49
Abstract
One of the main problems of modern medicine is cancer, which is the second leading cause of death after cardiovascular disease. Malignant neoplasms have been known for a long time; however, their study still presents significant difficulties. Modeling of malignant processes in animals allow researchers to study tumors and the main patterns of malignant growth characteristic of animals and humans. The main cause of death in malignant neoplasms is the process of metastasis formation, which remains to be understood in detail. The study of metastatic processes is one of the most important tasks of oncology. To this end, various models of tumor metastasis are created. The article reviews literature data on the most popular models of metastasis in experimental conditions. The advantages and disadvantages of the main approaches to modeling metastasis are evaluated.
About the Authors
N. Yu. TimofeevaRussian Federation
Natalia Yu. Timofeeva
428015, Cheboksary, Moskovskiy Avenue, 15
N. V. Bubnova
Russian Federation
Natalia V. Bubnova
428015, Cheboksary, Moskovskiy Avenue, 15
G. Yu. Struchko
Russian Federation
Gleb Yu. Struchko, Dr. Sci. (Med.), Prof.
428015, Cheboksary, Moskovskiy Avenue, 15
O. Yu. Kostrova
Russian Federation
Olga Yu. Kostrova, Cand. Sci. (Med.), Assoc. Prof.
428015, Cheboksary, Moskovskiy Avenue, 15
I. S. Stomenskaya
Russian Federation
Irina S. Stomenskaya, Cand. Sci. (Med.), Assoc. Prof.
428015, Cheboksary, Moskovskiy Avenue, 15
References
1. Kit O.I., Frantsiyants E.M., Kaplieva I.V., Trepitaki L.K., Evstratova O.F. Sposob polucheniya metastazov pecheni v eksperimente [Method for obtaining liver metastases in an experiment]. Bulletin of Experimental Biology and Medicine. 2014;6:745–747. (In Russian).
2. Kozlova M.B., Frantsiyants E.M., Trepitaki L.K., Kaplieva I.V., Pogorelova Yu.A., Sergost’yants G.Z., Airapetova T.G., Chubaryan A.V. Rol’ pola v kharaktere sistemnykh i tkanevykh narushenii gormonal’nogo gomeostaza u krys s eksperimental’noi model’yu metastazirovaniya v legkie [The role of gender in the nature of systemic and tissue disorders of hormonal homeostasis in rats with an experimental model of lung metastasis]. Meditsinskii vestnik Severnogo Kavkaza [Medical Bulletin of the North Caucasus]. 2016;3:377–380. (In Russian).
3. Latserus L.A., Pinigina N.M., Kozlov A.M., Baryshnikov A.Yu. Vliyanie preparata Abisilin na protsess iskusstvennogo retsidivirovaniya i metastazirovaniya kartsinomy legkogo L’yuis myshei [The influence of the drug Abisilin the process of artificial recurrence and metastasis of lung carcinoma Lewis mice]. Russian Biotherapeutic Journal. 2010;1:29–33. (In Russian).
4. Moskvichev E.V., Struchko G.Yu., Merkulova L.M., Kostrova O.Yu. Morfologiya raka tolstoi kishki posle primeneniya 1,2-dimetilgidrozolin degidrokhlorida [Morphology of colon cancer after the use of 1,2-dimethylhydrazine dihydrochloride]. Vestnik novykh meditsinskikh tekhnologii [Bulletin of New Medical Technologies]. 2009;S2:121–122. (In Russian).
5. Struchko G.Yu., Merkulova L.M., Moskichev E.V., Mikhailova M.N., Kostrova O.Yu., Stomenskaya I.S. Morfofunktsional’noe sostoyanie timusa v usloviyakh razvitiya opukholi tolstoi kishki [Morphofunctional state of the thymus in the conditions of colon tumor development]. Zdravookhranenie Chuvashii [Chuvashia Healthcare Journal]. 2009;3:47–52. (In Russian).
6. Treshchalina E.M. Immunodefitsitnye myshi Balb/c nude i modelirovanie razlichnykh variantov opukholevogo rosta dlya doklinicheskikh issledovanii [Immunodeficient BALB/c nude mice and modeling of various tumor growth variants for preclinical studies]. Russian Biotherapeutic Journal. 2017;3:6–13. (In Russian).
7. Kholodenko I.V., Doronin I.I., Kholodenko R.V. Opukholevye modeli v izuchenii onkologicheskikh zabolevanii [Tumor models in the study of oncological diseases. Immunology. 2013;5:282–286. (In Russian).
8. Bibby M.C. Orthotopic models of cancer for preclinical drug evaluation: advantages and disadvantages. Eur. J. Cancer. 2004;40(6):852–857. DOI: 10.1016/j.ejca.2003.11.021.
9. Bobek V., Plachy J., Pinterova D., Kolostova K., Boubelik M., Jiang P., Yang M., Hoffman R.M. Development of a green fluorescent protein metastatic-cancer chick-embryo drugscreen model. Clin. Exp. Metastasis. 2004;21(4):347–352. DOI: 10.1023/b:clin.0000046138.58210.31.
10. Bocuk D., Wolff A., Krause P., et al. The adaptation of colorectal cancer cells when forming metastases in the liver: expression of associated genes and pathways in a mouse model. BMC Cancer. 2017;17(1):342. DOI: 10.1186/s12885-017-3342-1.
11. Cespedes V.M., Casanova I., Parreno M., Mangues R. Mouse models in oncogenesis and cancer therapy. Clin. Transl. Oncol. 2006;8(5):318–329.
12. Fiebig H.H., Burger B.A. Relevance of tumor models for anticancer drug development. Contributions to oncology. Basel: Karger. 1999;15–27.
13. Fleten K.G., Bakke K.M., Maelandsmo G.M., et al. Use of non-invasive imaging to monitor response to aflibercept treatment in murine models of colorectal cancer liver metastases. Clin. Exp. Metastasis. 2017;34(1):51–62. DOI: 10.1007/s10585-016-9829-3.
14. Hatwell C., Zappa M., Wagner M., et al. Detection of liver micrometastases from colorectal origin by perfusion CT in a rat model. Hepatobiliary Pancreat. Dis. Int. 2014;13(3):301–308. DOI: 10.1016/s1499-3872(14)60043-6.
15. Heijstek M.W., Kranenburg O., Borel Rinkes I.H. Mouse models of colorectal cancer and liver metastases. Dig. Surg. 2005;22(1–2):16–25. DOI: 10.1159/000085342.
16. Mason R.S., Reichrath J. Sunlight vitamin D and skin cancer. Anticancer Agents. Med. Chem. 2013;13(1):83–97.
17. Muraoka T., Shirouzu K., Ozasa H., et al. The effect of starvation on blood stream cancer cell metastasis to the liver in rat after laparotomy. Kurume Med. J. 2013;60(2):59–66. DOI: 10.2739/kurumemedj.ms63005.
18. Nakamura M., Suemizu H. Novel metastasis models of human cancer in NOG mice. Curr. Top. Microbiol. Immunol. 2008;324:167–177. DOI: 10.1007/978-3-540-75647-7_11.
19. Ross S.R. Mouse mammary tumor virus molecular biology and oncogenesis. Viruses. 2010;2(9):2000– 2012. DOI: 10.3390/v2092000.
20. Sausville E.A., Burger A.M. Contributions of human tumor xenografts to anticancer drug development. Cancer Res. 2006;66(7):3351–3354, discussion 3354. DOI: 10.1158/0008-5472.CAN-05-3627.
21. Strowitzki M.J., Dold S., von Heesen M., et al. The phosphodiesterase 3 inhibitor cilostazol does not stimulate growth of colorectal liver metastases after major hepatectomy. Clin. Exp. Metastasis. 2014;31:795–803.
22. Suemizu H., Monnai M., Ohnishi Y., Ito M., et al. Identification of a key molecular regulator of liver metastasis in human pancreatic carcinoma using a novel quantitative model of metastasis in NOD/ SCID/gammacnull (NOG) mice. Int. J. Oncol. 2007;31(4):741–751.
23. Talmadge J.E., Meyers K.M., Prieur D.J., Starkey J.R. Role of NK cells in tumour growth and metastasis in beige mice. Nature. 1980;284(5757):622–624. DOI: 10.1038/284622a0.
24. Zijlstra A., Mellor R., Panzarella G. A quantitative analysis of rate-limiting steps in the metastatic cascade using human-specific real-time polymerase chain reaction. Cancer Res. 2002;62(23):7083–7092.
Review
For citations:
Timofeeva N.Yu., Bubnova N.V., Struchko G.Yu., Kostrova O.Yu., Stomenskaya I.S. Methods of Experimental Modeling of Metastasis. Journal Biomed. 2021;17(4):44-49. (In Russ.) https://doi.org/10.33647/2074-5982-17-4-44-49