Preview

Journal Biomed

Advanced search

Impact of Intranasal Insulin Administration On Na+/K+-Atpase and Са2+-Transporting System Components in Rat Cardiomyocytes with Type 1 Diabetes Mellitus

https://doi.org/10.33647/2074-5982-18-2-52-62

Abstract

Cardiovascular pathology is the main cause of morbidity among patients with diabetes mellitus. The development of a specific therapy aimed at either blunting the protein signals involved in pathological cardiomyocyte hypertrophy or upregulating the expression of cardioprotective pathways can support new strategies for treating diabetes-induced cardiac dysfunctions. The aim of the work was to study the impact of intranasal insulin administration (IIA) on the expression of genes encoding insulin-dependent signaling proteins and components of the Ca2+-transporting system, as well as on the activity of Na+/K+-ATPase in cardiomyocytes on the model of experimental type 1 diabetes mellitus (DM1) in rats. It was shown that IIA eliminates the uncoupling of molecular mechanisms involved in electromechanical coupling in rat cardiomyocytes that occurs under the conditions of mild DM1. This allowed us to recommend IIA as a therapeutic approach to the prevention and treatment of structural and functional myocardial disorders caused by diabetes.

About the Authors

I. B. Sukhov
Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences
Russian Federation

 Cand. Sci. (Biol.), 

 194223, Russian Federation, Saint-Petersburg, Thorez Ave., 44 



O. V. Chistyakova
Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences
Russian Federation

 Cand. Sci. (Biol.), 

 194223, Russian Federation, Saint-Petersburg, Thorez Ave., 44 



References

1. Chistyakova O.V., Sukhov I.B., Dobretsov M.G., Kubasov I.V. Izuchenie aktivnosti NA/K-atfazy` v miokarde kry`s v e`ksperimental`ny`x usloviyax preddiabeta i saxarnogo diabeta [The study of rat myocardial Na/K-ATPase activity in experimental conditions of prediabetes and diabetes mellitus]. Zhurnal evolyutsionnoy biokhimii i fiziologii [Journal of Evolutionary Biochemistry and Physiology]. 2020;56(2):166–168. (In Russian). DOI: 10.31857/S0044452920020047.

2. Andersson U., Tracey K.J. Reflex principles of immunological homeostasis. Annu. Rev. Immunol.БИОМЕДИЦИНА | JOURNAL BIOMED | 2022 | Toм 18 | № 2 | 52–62 61 2012;30:313–335. DOI: 10.1146/annurev-immunol-020711-075015.

3. Berry R.G., Despa S., Fuller W., Bers D.M., Shattock M.J. Differential distribution and regulation of mouse cardiac Na+/K+-ATPase α1 and α2 subunits in T-tubule and surface sarcolemmal membranes. Cardiovasc. Res. 2007;73(1):92–100. DOI: 10.1016/j.cardiores.2006.11.006

4. Blake C.B., Smith B.N. Insulin reduces excitation in gastric-related neurons of the dorsal motor nucleus of the vagus. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2012;303(8):R807–R814. DOI: 10.1152/ajpregu.00276.2012.

5. Bublitz M. (ed.). P-type ATPases: Methods and protocols, methods in molecular biology. New York: Springer Science+Business Media, 2016;1377.

6. Chibalin A.V. Regulation of the Na,K-ATPase: Special implications for cardiovascular complications of metabolic syndrome. Pathophysiology. 2007;14(3–4):153–158. DOI: 10.1016/j.pathophys.2007.09.004.

7. Dallak M., Al-Ani B., Abdel Kader D.H., Eid R.A., Haidara M.A. Insulin suppresses type 1 diabetes mellitus-induced ventricular cardiomyocyte damage associated with the inhibition of biomarkers of inflammation and oxidative stress in rats. Pharmacology. 2019;104(3–4):157–165. DOI: 10.1159/000500898.

8. Despa S., Bers D.M. Functional analysis of Na/KATPase isoform distribution in rat ventricular myocytes. Am. J. Physiol. Cell Physiol. 2007;293(1):C321–C327. DOI: 10.1152/ajpcell.00597.2006.

9. Despa S., Lingrel J.B., Bers D.M. Na(+)/K)+)-ATPase α2-isoform preferentially modulates Ca2(+) transients and sarcoplasmic reticulum Ca2(+) release in cardiac myocytes. Cardiovasc. Res. 2012;95(4):480–486. DOI: 10.1093/cvr/cvs213.

10. Hang P., Zhao J., Qi J., Wang Y., Wu J., Du Z. Novel insights into the pervasive role of M(3) muscarinic receptor in cardiac diseases. Curr. Drug Targets. 2013;14(3):372–377.

11. Hansen P.S., Buhagiar K.A., Gray D.F., Rasmussen H.H. Voltage-dependent stimulation of the Na(+)-K(+) pump by insulin in rabbit cardiac myocytes. Am. J. Physiol. Cell. Physiol. 2000;278(3):C546–С553. DOI: 10.1152/ajpcell.2000.278.3.C546.

12. Iannello S., Milazzo P., Belfiore F. Animal and human tissue Na, K-ATPase in obesity and diabetes: A new proposed enzyme regulation. Am. J. Med. Sci. 2007;333(1):1–9. DOI: 10.1097/00000441-200701000-00001.

13. Krowicki Z.K., Nathan N.A., Hornby P.J. Gastric motor and cardiovascular effects of insulin in dorsal vagal complex of the rat. Am. J. Physiol. 1998;275(5):G964–G972. DOI: 10.1152/ajpgi.1998.275.5.G964.

14. Lochhead J.J., Thorne R.G. Intranasal delivery of biologics to the central nervous system. Adv. Drug Deliv. Rev. 2012;64(7):614-628. DOI: 10.1016/j.addr.2011.11.002.

15. Louch W.E., Sejersted O.M., Swift F. There goes the neighborhood: Pathological alterations in T-tubule morphology and consequences for cardiomyocyte Ca2+ handling. J. Biomed. Biotechnol. 2010;2010:503906. DOI: 10.1155/2010/503906.

16. Machhada A., Hosford P.S., Dyson A., Ackland G.L., Mastitskaya S., Gourine A.V. Optogenetic stimulation of vagal efferent activity preserves left ventricular function in experimental heart failure. JACC Basic Transl. Sci. 2020;5(8):799–810. DOI: 10.1016/j.jacbts.2020.06.002.

17. Olofsson P.S., Rosas-Ballina M., Levine Y.A., Tracey K.J. Rethinking inflammation: Neural circuits in the regulation of immunity. Immunol. Rev. 2012;248(1):188–204. DOI: 10.1111/j.1600-065X.2012.01138.x.

18. Pan Z., Guo Y., Qi H., Fan K., Wang S., Zhao H., Fan Y., Xie J., Guo F., Hou Y., Wang N., Huo R., Zhang Y., Liu Y., Du Z. M3 subtype of muscarinic acetylcholine receptor promotes cardioprotection via the suppression of miR-376b-5p. PLoS One. 2012;7(3):e32571. DOI: 10.1371/journal.pone.0032571.

19. Pocai A., Lam T.K., Gutierrez-Juarez R., Obici S., Schwartz G.J., Bryan J., Aguilar-Bryan L., Rossetti L. Hypothalamic K(ATP) channels control hepatic glucose production. Nature. 2005;434(7036):1026–1031. DOI: 10.1038/nature03439.

20. Romic S., Djordjevic A., Tepavcevic S., Culafic T., Stojiljkovic M., Bursac B., Stanisic J., Kostic M., Gligorovska L., Koricanac G. Effects of a fructose-rich diet and chronic stress on insulin signaling and regulation of glycogen synthase kinase-3 beta and the sodium-potassium pump in the hearts of male rats. Food Funct. 2020;11(2):1455–1466. DOI: 10.1039/c9fo02306b.

21. Rosta K., Tulassay E., Enzsoly A., Ronai K., Szantho A., Pandics T., Fekete A., Mandl P., Ver A. Insulin induced translocation of Na+/K+ -ATPase is decreased in the heart of streptozotocin diabetic rats. Acta Pharmacol. Sin. 2009;30(12):1616–1624. DOI: 10.1038/aps.2009.162.

22. Shpakov A.O., Derkach K.V., Chistyakova O.V., Moiseyuk I.V., Sukhov I.B., Bondareva V.M. Effect of intranasal insulin and serotonin on functional activity of the adenylyl cyclase system in myocardium, ovary, and uterus of rats with prolonged neonatal model of diabetes mellitus. J. Evol. Biochem. Physiol. 2013;49(2):153–164. DOI: 10.1134/S0022093013020047.

23. Shpakov A.O., Chistyakova O.V., Derkach K.V., Moiseyuk I.V., Bondareva V.M. Intranasal insulin affects adenylyl cyclase system in rat tissues in neonatal diabetes. Central Eur. J. Biol. 2012;7(1):33–47. DOI: 10.2478/s11535-011-0089-6.

24. Ver A., Szántó I., Bányász T., Csermely P., Végh E., Somogyi J. Changes in the expression of Na+/K+-ATPase isoenzymes in the left ventricle of diabetic rat hearts: effect of insulin treatment. Diabetologia. 1997;40(11):1255–1262. DOI: 10.1007/s001250050818.

25. Yan X., Xun M., Dou X., Wu L., Han Y., Zheng J. Regulation of Na+-K+-ATPase effected high glucose-induced myocardial cell injury through c-Src dependent NADPH oxidase/ROS pathway. Exp. Cell Res. 2017;357(2):243–251. DOI: 10.1016/j.yexcr.2017.05.023.


Review

For citations:


Sukhov I.B., Chistyakova O.V. Impact of Intranasal Insulin Administration On Na+/K+-Atpase and Са2+-Transporting System Components in Rat Cardiomyocytes with Type 1 Diabetes Mellitus. Journal Biomed. 2022;18(2):52-62. (In Russ.) https://doi.org/10.33647/2074-5982-18-2-52-62

Views: 385


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2074-5982 (Print)
ISSN 2713-0428 (Online)