Preview

БИОМЕДИЦИНА

Расширенный поиск

ТРАНСГЕННЫЕ И НОКАУТНЫЕ КРОЛИКИ В БИОМЕДИЦИНЕ И ГЕНОТЕРАПИИ. CRISPR/CAS9-ТЕХНОЛОГИИ (ОБЗОР)

https://doi.org/10.33647/2074-5982-15-4-12-33

Полный текст:

Аннотация

С появлением эндонуклеазных методов редактирования генома, особенно CRISPR/Cas9, стало возможным методом микроинъекции зигот с высокой эффективностью получать животных — как мышей, так и особенно генно-модифицированных кроликов — для различных целей. В настоящей работе рассматриваются современные мировые достижения по созданию кроликов — биомоделей заболеваний человека с использованием технологий геномного редактирования, явления мозаицизма. Делается заключение о целесообразности получения генетически модифицированных кроликов для биомедицинских исследований и биомоделирования.

Об авторах

Е. М. Колоскова
Всероссийский научно-исследовательский институт физиологии, биохимии и питания животных — филиал ФГБНУ «Федеральный научный центр животноводства — ВИЖ им. акад. Л.К. Эрнста»
Россия

к.б.н.,

249013, Калужская обл., Боровск, пос. Институт



В. Н. Каркищенко
ФГБУН «Научный центр биомедицинских технологий Федерального медико-биологического агентства России»
Россия

д.м.н., проф., 

143442, Московская обл., Красногорский р-н, п. Светлые горы, владение 1



В. А. Езерский
Всероссийский научно-исследовательский институт физиологии, биохимии и питания животных — филиал ФГБНУ «Федеральный научный центр животноводства — ВИЖ им. акад. Л.К. Эрнста»
Россия
249013, Калужская обл., Боровск, пос. Институт


Н. В. Петрова
ФГБУН «Научный центр биомедицинских технологий Федерального медико-биологического агентства России»
Россия
143442, Московская обл., Красногорский р-н, п. Светлые горы, владение 1


С. В. Максименко
ФГБУН «Научный центр биомедицинских технологий Федерального медико-биологического агентства России»
Россия

к.б.н., 

143442, Московская обл., Красногорский р-н, п. Светлые горы, владение 1



Е. Л. Матвеенко
ФГБУН «Научный центр биомедицинских технологий Федерального медико-биологического агентства России»
Россия

к.э.н., доц., 

143442, Московская обл., Красногорский р-н, п. Светлые горы, владение 1



Список литературы

1. Езерский В.А., Шишиморова М.С., Тевкин С.И., Трубицина Т.П., Колоскова Е.М., Безбородова О.А. и др. Интеграция и тканеспецифическая экспрессия гена лактоферрина человека в молочной железе трансгенных кроликов. Проблемы биологии продуктивных животных. Боровск. 2013;4:33–52.

2. Каркищенко В.Н., Болотских Л.А., Капанадзе Г.Д., Каркищенко Н.Н., Колоскова Е.М., Максименко С.В. и др. Создание линий трансгенных животных-моделей с генами человека NAT1 и NAT2. Биомедицина. 2016;(1):74–85.

3. Каркищенко В.Н., Рябых В.П., Болотских Л.А., Семенов Х.Х., Капанадзе Г.Д., Петрова Н.В. и др. Физиолого-эмбриологические аспекты создания трансгенных мышей с интегрированными генами NAT1 и NAT2 человека. Биомедицина. 2016;(1):52– 66.

4. Каркищенко Н.Н., Рябых В.П., Колоскова Е.М., Каркищенко В.Н. Создание гуманизированных мышей для фармакотоксикологических исследований (успехи, неудачи и перспективы). Биомедицина. 2014;(3):4–22.

5. Макаренко И.Е., Калатанова А.В., Ванатиев Г.В., Мужикян А.А., Шекунова Е.В., Буренков П.В. и др. Выбор оптимального вида животных для моделирования экспериментального артериального тромбоза. Международный вестник ветеринарии. 2016;2:116–125.

6. Рыбакова А.В., Макарова М.Н., Макаров В.Г. Использование кроликов в доклинических исследованиях. Международный вестник ветеринарии. 2016;4:102–106.

7. Чемерис Д.А., Кирьянова О.Ю., Геращенков Г.А., Кулуев Б.Р., Рожнова Н.А., Матниязов Р.Т. и др. Биоинформатические ресурсы для CRISPR/Cas редактирования геномов. Биомика. 2017;9(3):203– 228.

8. Aida T., Chiyo K., Usami T., Ishikubo H., Imahashi R., Wada Y., et al. Cloning-free CRISPR/Cas system facilitates functional cassette knock-in in mice. Genome Biol. 2015;16(87):11.

9. Arias-Mutis O.J., Marrachelli V.G., Ruiz-Saurí A., Alberola A., Morales J.M., Such-Miquel L., et al. Development and characterization of an experimental model of diet-induced metabolic syndrome in rabbit. PLoS One. 2017;23;12(5):e0178315.

10. Bosze Z., Hiripi L., Carnwath J.W., Niemann H. The transgenic rabbit as model for human diseases and as a source of biologically active recombinant proteins. Transgenic. Res. 2003;12:541–553.

11. Bosze Z., Houdebine L.M. Application of rabbits in biomedical research: a review. World Rabbit Sci. 2006;14:1–14.

12. Bosze Z., Major P., Baczko I., Odening K.E., Bodrogi L., Hiripi L., et al. The potential impact of new generation transgenic methods on creating rabbit models of cardiac diseases. Prog. Biophys. Mol. Biol. 2016;121:123–130.

13. Campbell I.M., Shaw C.A., Stankiewicz P., Lupski J.R. Somatic mosaicism: implications for disease and transmission genetics. Trends Genet. 2015;31(7):382–392.

14. Chen M., Yao B., Yang Q., Deng J., Song Y., Sui T., et al. Truncated C-terminus of fi brillin-1 induces Marfanoid-progeroid-lipodystrophy (MPL) syndrome in rabbit. Dis. Model. Mech. 2018;11(4). PII: dmm031542. DOI: 10.1242/dmm.031542.

15. Chentoufi A.A., Dasgupta G., Christensen N.D., Hu J., Choudhury Z.S., Azeem A., et al. A novel HLA (HLA-A_0201) transgenic rabbit model for preclinical evaluation of human CD81 T cell epitope-based vaccines against ocular herpes. J. Immunol. 2010;184:2561–2571.

16. Chesné P., Adenot P.G., Viglietta C., Baratte M., Boulanger L., Renard J.P. Cloned rabbits produced by nuclear transfer from adult somatic cells. Nat. Biotechnol. 2002;20:366–369. 17. Darby C.A., Fitch J.R., Brennan P.J., et al. Samovar: Single-Sample Mosaic Single-Nucleotide Variant Calling with Linked Reads. iScience. 2019;18:1–10.

17. Deng J., Chen M., Liu Z., Song Y., Sui T., Lai L., et al. The disrupted balance between hair follicles and sebaceous glands in Hoxc13-ablated rabbits. FASEB J. 2019;33(1):1226–1234. DOI: 10.1096/fj.201800928RR.

18. Esteves P.J., Abrantes J., Baldauf H.M., BenMohamed L., Chen Y., Christensen N., et al. The wide utility of rabbits as models of human diseases. Exp. Mol. Med. 2018;50(5):66. DOI: 10.1038/s12276-018-0094-1.

19. Fan J., Chen Y., Yan H., Niimi M., Wang Y., Liang J. Principles and Applications of Rabbit Models for Atherosclerosis Research. J. Atheroscler. Thromb. 2018;25(3):213–220. DOI: 10.5551/jat.RV17018.

20. Fan J., Kitajima S., Watanabe T., Xu J., Zhang J., Liu E., et al. Rabbit models for the study of human atherosclerosis: from pathophysiological mechanisms to translational medicine. Pharmacol. Ther. 2015;146:104–119. DOI: 10.1016/j.pharmthera.2014.09.009.

21. Favaro P., Finn J.D., Siner J.I., Wright J.F., High K.A., Arruda V.R. Safety of liver gene transfer following peripheral intravascular delivery of adeno-associated virus (AAV)-5 and AAV-6 in a large animal model. Hum. Gene Ther. 2011;22(7):843–852.

22. Fischer B., Chavatte-Palmer P., Viebahn C., Santos A.N., Duranthon V. Rabbit as a reproductive model for human health. Reproduction. 2012;144:1– 10. DOI: 10.1530/REP-12-0091.

23. Flisikowska T., Thorey I.S., Offner S., Ros F., Lifke V., Zeitler B., et al. Effi cient immunoglobulin gene disruption and targeted replacement in rabbit using zinc fi nger nucleases. PLoS One. 2011;6:e21045.

24. Gaudelli N.M., Komor A.C., Rees H.A., Packer M.S., Badran A.H., Bryson D.I., et al. Programmable base editing of A*T to G*C in genomic DNA without DNA cleavage. Nature. 2017;551(7681):464–471. DOI: 10.1038/nature24644.

25. Gehrke J.M., Cervantes O., Clement M.K., Wu Y., Zeng J., Bauer D.E., et al An APOBEC3A-Cas9 base editor with minimized bystander and off-target activities. Nat. Biotechnol. 2018;36(10):977–982. DOI: 10.1038/nbt.4199.

26. Gopinath C., Nathar T.J., Ghosh A., Hickstein D.D., Nelson E.J.R. Contemporary Animal Models For Human Gene Therapy Applications. Curr. Gene. Ther. 2015;15(6):531–540.

27. Guo R., Wan Y., Xu D., Cui L., Deng M., Zhang G., et al. Generation and evaluation of Myostatin knockout rabbits and goats using CRISPR/Cas9 system. Sci. Rep. 2016;15;6:29855. DOI: 10.1038/srep29855.

28. Hammer R.E., Pursel V.G., Rexroad C.E. Jr., Wall R.J., Bolt D.J., Ebert K.M., et al. Production of transgenic rabbits, sheep and pigs by microinjection. Nature. 1985;315:680–683.

29. Honda A., Hirose M., Inoue K., Ogonuki N., Miki H., Shimozawa N., et al. Stable embryonic stem cell lines in rabbits: potential small animal models for human research. Reprod. Biomed. Online. 2008;17:706–715.

30. Honda A., Hirose M., Sankai T., Yasmin L., Yuzawa K., Honsho K., et al. Single-step generation of rabbits carrying a targeted allele of the tyrosinase gene using CRISPR/Cas9. Exp. Anim. 2015;64:31–37.

31. Honda A., Ogura A. Rabbit models for biomedical research revisited via genome editing approaches. J. Reprod. Dev2020. 2017;63(5):435–438. DOI: 10.1262/jrd.2017-053.

32. Houdebine L.M., Fan J. Rabbit biotechnology: rabbit genomics, transgenesis, cloning and models. Heildelberg/Berlin/New York: Springer Science & Business Media, 2009.

33. https://monographies.ru/en/book/section?id=10062 35. Ji D., Zhao G., Songstad A., Cui X., Weinstein E.J. Effi cient creation of an APOE knockout rabbit. Transgenic Res. 2015;24:227–235.

34. Jiang W., Liu L., Chang Q., Xing F., Ma Z., Fang Z., et al. Production of Wilson Disease Model Rabbits with Homology-Directed Precision Point Mutations in the ATP7B Gene Using the CRISPR/Cas9 System. Sci. Rep. 2018;8(1):1332. DOI: 10.1038/s41598-018-19774-4.

35. Kamaruzaman N.A., Kardia E, Kamaldin N., Latahir A.Z., Yahaya B.H. The rabbit as a model for studying lung disease and stem cell therapy. Biomed. Res. Int. 2013;691830. DOI: 10.1155/2013/691830.

36. Kawano Y., Honda A. Gene Targeting in Rabbits: Single-Step Generation of Knock-out Rabbits by Microinjection of CRISPR/Cas9 Plasmids. Methods Mol. Biol. 2017;1630:109–120. DOI: 10.1007/978-1-4939-7128-2_10.

37. Komor A.C., Kim Y.B., Packer M.S., Zuris J.A., Liu D.R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature. 2016;533:420–424.

38. Kondo M., Sakai T., Komeima K., Kurimoto Y., Ueno S., Nishizawa Y., et al. Generation of a transgenic rabbit model of retinal degeneration. Invest. Ophthalmol. Vis. Sci. 2009;50:1371–1377.

39. Lee J.G., Sung Y.H., Baek I.J. Generation of genetically-engineered animals using engineered endonucleases. Arch. Pharm. Res. 2018;41(9):885– 897. DOI: 10.1007/s12272-018-1037-z.

40. Lenz W. A short history of thalidomide embryopathy. Teratology. 1988;38:203–215. DOI: 10.1002/tera.1420380303.

41. Li L., Zhang Q., Yang H., Zou Q., Lai C., Jiang F., et al. Fumarylacetoacetate Hydrolase Knock-out Rabbit Model for Hereditary Tyrosinemia Type 1. J. Biol. Chem. 2017;292(11):4755–4763. DOI: 10.1074/jbc.M116.764787.

42. Li Q., Qin Z., Wang Q., Xu T., Yang Y., He Z. Applications of Genome Editing Technology in Animal Disease Modeling and Gene Therapy. Comput. Struct. Biotechnol. J. 2019;17:689–698. DOI: 10.1016/j.csbj.2019.05.006.

43. Liu H., Sui T., Liu D., Liu T., Chen M., Deng J., et al. Multiple homologous genes knockout (KO) by CRISPR/Cas9 system in rabbit. Gene. 2018;647:261– 267. DOI: 10.1016/j.gene.2018.01.044.

44. Liu T., Wang J., Xie X., Wang K., Sui T., Liu D., et al. DMP1 Ablation in the Rabbit Results in Mineralization Defects and Abnormalities in Haversian Canal/Osteon Microarchitecture. J. Bone Miner. Res. 2019. DOI: 10.1002/jbmr.3683.

45. Liu Z., Chen M., Chen S., Deng J., Song Y., Lai L., et al. Highly effi cient RNA-guided base editing in rabbit. Nat. Commun. 2018;9(1):2717. DOI: 10.1038/s41467- 018-05232-2.

46. Liu Z., Chen S., Shan H., Zhang Q., Chen M., Lai L., et al. Effi cient and precise base editing in rabbits using human APOBEC3A-nCas9 fusions. Cell Discov. 2019;5:31. DOI: 10.1038/s41421-019-0099-5.

47. Lombardi R.., Rodriguez G., Chen S.N., Ripplinger C.M., Li W., Chen J., et al. Resolution of established cardiac hypertrophy and fi brosis and prevention of systolic dysfunction in a transgenic rabbit model of human cardiomyopathy through thiolsensitive mechanisms. Circulation. 2009;17:1398–1407.

48. Lozano W.M., Arias-Mutis O.J., Calvo C.J., Chorro F.J., Zarzoso M. Diet-Induced Rabbit Models for the Study of Metabolic Syndrome. Animals (Basel). 2019;9(7). PII: E463. DOI: 10.3390/ani9070463.

49. Lu R., Yuan T., Wang Y., Zhang T., Yuan Y., Wu D., et al. Spontaneous severe hypercholesterolemia and atherosclerosis lesions in rabbits with defi ciency of low-density lipoprotein receptor (LDLR) on exon 7. EBioMedicine. 2018;36:29–38. DOI: 10.1016/j.ebiom.2018.09.020.

50. Lu Y., Liang M., Zhang Q., Liu Z., Song Y., Lai L., et al. Mutations of GADD45G in rabbits cause cleft lip by the disorder of proliferation, apoptosis and epithelialmesenchymal transition (EMT). Biochim. Biophys. Acta Mol. Basis Dis. 2019;1865(9):2356–2367. DOI: 10.1016/j.bbadis.2019.05.015.

51. Lv Q., Yuan L., Deng J., Chen M., Wang Y., Zeng J., et al. Effi cient generation of myostatin gene mutated rabbit by CRISPR/Cas9. Sci. Rep. 2016;6:25029.

52. Maertens L., Lebas F., Szendrö Zs. Rabbit milk: a review of quantity, quality and non-dietary affecting factors. World Rabbit Sci. 2006;14:205–230.

53. Mage R.G., Esteves P., Rader C. Rabbit models of human diseases for diagnostics and therapeutics development. Dev. Comp. Immunol. 2019;92:99–104. DOI: 10.1016/j.dci.2018.10.003.

54. Mashiko D., Fujihara Y., Satouh Y., Miyata H., Isotani A., Ikawa M. Generation of mutant mice by pronuclear injection of circular plasmid expressing Cas9 and single guided RNA. Sci. Rep. 2013;3:3355.

55. Meier R.P.H., Muller Y.D., Balaphas A., Morel P., Pascual M., Seebach J.D., et al. Xenotransplantation: back to the future? Transpl. Int. 2018;31(5):465–477. DOI: 10.1111/tri.13104.

56. Mizuno S., Dinh T.T., Kato K., Mizuno-Iijima S., Tanimoto Y., Daitoku Y., et al. Simple generation of albino C57BL/6J mice with G291T mutation in the tyrosinase gene by the CRISPR/Cas9 system. Mamm. Genome. 2014;25:327–334.

57. Mohan R.R., Tovey J.C.K., Sharma A., Schultz G.S., Cowden J.W., Tandon A. Targeted Decorin gene therapy delivered with adenoassociated virus effectively retards corneal neovascularization in vivo. PLoS One. 2011;6(10):e26432.

58. Niimi M., Yang D., Kitajima S., Ning B., Wang C., Li S., et al. ApoE knockout rabbits: A novel model for the study of human hyperlipidemia. Atherosclerosis. 2016;245:187–193.

59. Oshiro H. The role of the lymphatic system in rabbit models for cancer metastasis research: a perspective from comparative anatomy. Okajimas Folia Anat. Jpn. 2014;91(2):25–28.

60. Parvinian A., Casadaban L.C., Gaba R.C. Development, growth, propagation, and angiographic utilization of the rabbit VX2 model of liver cancer: a pictorial primer and “how to” guide. Diagn. Interv. Radiol. 2014;20(4):335–340. DOI: 10.5152/dir.2014.13415.

61. Pellerin O., Amara I., Sapoval M., Méachi T., Déan C., Beaune P., et al. Hepatic Intra-arterial Delivery of a “Trojan-horses” Gene Therapy: A Pilot Study on Rabbit VX2 Hepatic Tumor Model. Cardiovasc. Intervent. Radiol. 2018;41(1):153–162. DOI: 10.1007/s00270-017-1833-8.

62. Peng X. Transgenic rabbit models for studying human cardiovascular diseases. Comp. Med. 2012;62(6):472–479.

63. Peng X., Knouse J.A., Hernon K.M. Rabbit Models for Studying Human Infectious Diseases. Comp. Med. 2015;65(6):499–507.

64. Permuy M., López-Peña M., Muñoz F., GonzálezCantalapiedra A. Rabbit as model for osteoporosis research. J. Bone Miner. Metab. 2019;37(4):573–583. DOI: 10.1007/s00774-019-01007-x.

65. Prieto V., Ludwig J.M., Farris A.B., Nagaraju G.P., Lawal T.O., El-Rayes B., et al. Establishment of human metastatic colorectal cancer model in rabbit liver: A pilot study. PLoS One. 2017;12(5):e0177212. DOI: 10.1371/journal.pone.0177212.

66. Song J., Wang G., Hoenerhoff M.J., Ruan J., Yang D., Zhang J., et al. Bacterial and Pneumocystis Infections in the Lungs of Gene-Knockout Rabbits with Severe Combined Immunodefi ciency. Front. Immunol. 2018;9:429. DOI: 10.3389/fimmu.2018.00429.

67. Song J., Yang D., Ruan J., Zhang J., Chen Y.E., Xu J. Production of immunodefi cient rabbits by multiplex embryo transfer and multiplex gene targeting. Sci Rep. 2017;7(1):12202. DOI: 10.1038/s41598-017-12201-0.

68. Song J., Yang D., Xu J., Zhu T., Chen Y.E., Zhang J. RS-1 enhances CRISPR/Cas9-and TALEN-mediated knock-in effi ciency. Nat. Commun. 2016;7:10548.

69. Song J., Zhong J., Guo X., Chen Y., Zou Q., Huang J., et al. Generation of RAG 1- and 2-deficient rabbits by embryo microinjection of TALENs. Cell Res. 2013;23:1059–1062.

70. Song Y., Liu T., Wang Y., Deng J., Chen M., Yuan L., et al. Mutation of the Sp1 binding site in the 5’ fl anking region of SRY causes sex reversal in rabbits. Oncotarget. 2017;8(24):38176–38183. DOI: 10.18632/oncotarget.16979.

71. Song Y., Xu Y., Deng J., Chen M., Lu Y., Wang Y., et al. CRISPR/Cas9-mediated mutation of tyrosinase (Tyr) 3’ UTR induce graying in rabbit. Sci. Rep. 2017;7(1):1569. DOI: 10.1038/s41598-017-01727-y.

72. Song Y., Xu Y., Liang M., Zhang Y., Chen M., Deng J., et al. CRISPR/Cas9-mediated mosaic mutation of SRY gene induces hermaphroditism in rabbits. Biosci. Rep. 2018;38(2). PII: BSR20171490. DOI: 10.1042/BSR20171490.

73. Song Y., Yuan L., Wang Y., Chen M., Deng J., Lv Q., et al. Effi cient dual sgRNA-directed large gene deletion in rabbit with CRISPR/Cas9 system. Cell. Mol. Life Sci. 2016;73:2959–2968. DOI: 10.1007/s00018-016-2143-z.

74. Song Y., Zhang Y., Chen M., Deng J., Sui T., Lai L., et al. Functional validation of the albinismassociated tyrosinase T373K SNP by CRISPR/Cas9- mediated homology-directed repair (HDR) in rabbits. EBioMedicine. 2018;36:517–525. DOI: 10.1016/j. ebiom.2018.09.041.

75. Sui T., Lau Y.S., Liu D., Liu T., Xu L., Gao Y., et al. A novel rabbit model of Duchenne muscular dystrophy generated by CRISPR/Cas9. Dis. Model. Mech. 2018;11(6). PII: dmm032201. DOI: 10.1242/dmm.032201.

76. Sui T., Liu D., Liu T., Deng J., Chen M., Xu Y., et al. LMNA-mutated Rabbits: A Model of Premature Aging Syndrome with Muscular Dystrophy and Dilated Cardiomyopathy. Aging Dis. 2019;10(1):102–115. DOI: 10.14336/AD.2018.0209.

77. Sui T., Xu L., Lau Y.S., Liu D., Liu T., Gao Y., et al. Development of muscular dystrophy in a CRISPRengineered mutant rabbit model with frame-disrupting ANO5 mutations. Cell. Death. Dis. 2018;9(6):609. DOI: 10.1038/s41419-018-0674-y.

78. Sui T., Yuan L., Liu H., Chen M., Deng J., Wang Y., et al. CRISPR/Cas9-mediated mutation of PHEX in rabbit recapitulates human X-linked hypophosphatemia (XLH). Hum. Mol. Genet. 2016;25:2661–2671.

79. Taniyama Y., Morishita R., Aoki M., Nakagami H., Yamamoto K., Yamazaki K., et al. Therapeutic angiogenesis induced by human hepatocyte growth factor gene in rat and rabbit hind limb ischemia models: preclinical study for treatment of peripheral arterial disease. Gene Ther. 2001;8:181–189.

80. Thomas P.B., Samant D.M., Selvam S., Wei R.H., Wang Y., Stevenson D., et al. Adenoassociated virus– mediated il-10 gene transfer suppresses lacrimal gland immunopathology in a rabbit model of autoimmune dacryoadenitis. IOVS. 2010;51:5137–5144.

81. Tsurumi Y., Takeshita S., Chen D., Kearney M., Rossow S.T., Passeri J., et al. Direct intramuscular gene transfer of naked DNA encoding vascular endothelial growth factor augments collateral development and tissue perfusion. Circulation. 1996;94(12):3281–3290.

82. Volobueva A.S., Orekhov A.N., Deykin A.V. An update on the tools for creating transgenic animal models of human diseases — focus on atherosclerosis. Braz. J. Med. Biol. Res. 2019;52(5):e8108. DOI: 10.1590/1414-431X20198108.

83. Wang H., Yang H., Shivalila C.S., Dawlaty M.M., Cheng A.W., Zhang F., et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell. 2013;153(4):910–918. DOI: 10.1016/j.cell.2013.04.025.

84. Wang Y., Fan N., Song J., Zhong J., Guo X., Tian W., et al. Generation of knockout rabbits using transcription activator-like effector nucleases. Cell. Regen. (Lond.). 2014;3:3. DOI: 10.1186/2045-9769-3-3.

85. Waugh J.M., Kattash M., Li J., Yuksel E., Kuo M.D., Lussier M., et al. Gene therapy to promote thromboresistance: Local overexpression of tissue plasminogen activator to prevent arterial thrombosis in an in vivo rabbit model. Proc. Natl. Acad. Sci. USA. 1999;96(3):1065–1070.

86. Weber J., Peng H., Rader C. From rabbit antibody repertoires to rabbit monoclonal antibodies. Exp. Mol. Med. 2017;49(3):e305. DOI: 10.1038/emm.2017.23.

87. Xu Y., Wang Y., Song Y., Deng J., Chen M., Ouyang H., et al. Generation and Phenotype Identifi cation of PAX4 Gene Knockout Rabbit by CRISPR/Cas9 System. G3 (Bethesda). 2018;8(8):2833–2840. DOI: 10.1534/g3.118.300448.

88. Yan Q., Zhang Q., Yang H., Zou Q., Tang C., Fan N., et al. Generation of multi-gene knockout rabbits using the Cas9/gRNA system. Cell. Regen. (Lond). 2014;3(1):12. DOI: 10.1186/2045-9769-3-12.

89. Yang D., Song J., Zhang J., Xu J., Zhu T., Wang Z., et al. Identifi cation and characterization of rabbit ROSA26 for gene knock-in and stable reporter gene expression. Sci. Rep. 2016;6:25161.

90. Yang D., Xu J., Zhu T., Fan J., Lai L., Zhang J., et al. Effective gene targeting in rabbits using RNA-guided Cas9 nucleases. J. Mol. Cell. Biol. 2014;6(1):97–99. DOI: 10.1093/jmcb/mjt047.

91. Yang D., Zhang J., Xu J., Zhu T., Fan Y., Fan J., et al. Production of apolipoprotein C-III knockout rabbits using zinc fi nger nucleases. J. Vis. Exp. 2013;(81):e50957. DOI: 10.3791/50957.

92. Yin M., Jiang W., Fang Z., Kong P., Xing F., Li Y., et al. Generation of hypoxanthine phosphoribosyltransferase gene knockout rabbits by homologous recombination and gene trapping through somatic cell nuclear transfer. Sci. Rep. 2015;5:16023.

93. Yoshimi K., Kaneko T., Voigt B., Mashimo T. Allelespecifi c genome editing and correction of disease-associated phenotypes in rats using the CRISPR-Cas platform. Nat. Commun. 2014;5:4240.

94. Yuan L., Sui T., Chen M., Deng J., Huang Y., Zeng J., et al. CRISPR/Cas9-mediated GJA8 knockout in rabbits recapitulates human congenital cataracts. Sci. Rep. 2016;6:22024.

95. Yuan L., Yao H., Xu Y., Chen M., Deng J., Song Y., et al. CRISPR/Cas9-Mediated Mutation of αA-Crystallin Gene Induces Congenital Cataracts in Rabbits. Invest. Ophthalmol. Vis. Sci. 2017;58(6):BIO34–BIO41. DOI: 10.1167/iovs.16-21287.

96. Yuan T., Zhong Y., Wang Y., Zhang T., Lu R., Zhou M., et al. Generation of hyperlipidemic rabbit models using multiple sgRNAs targeted CRISPR/Cas9 gene editing system. Lipids Health Dis. 2019;18(1):69. DOI: 10.1186/s12944-019-1013-8.

97. Zakhartchenko V., Flisikowska T., Li S., Richter T., Wieland H., Durkovic M., et al. Cell-mediated transgenesis in rabbits: chimeric and nuclear transfer animals. Biol. Reprod. 2011;84:229–237.

98. Zernii E.Y., Baksheeva V.E., Iomdina E.N., Averina O.A., Permyakov S.E., Philippov P.P., et al. Rabbit Models of Ocular Diseases: New Relevance for Classical Approaches. CNS Neurol. Disord. Drug Targets. 2016;15(3):267–291.

99. Zhang J., Niimi M., Yang D., Liang J., Xu J., Kimura T., et al. Defi ciency of Cholesteryl Ester Transfer Protein Protects Against Atherosclerosis in Rabbits. Arterioscler. Thromb. Vasc. Biol. 2017;37(6):1068– 1075. DOI: 10.1161/ATVBAHA.117.309114.

100. https://medach.pro/post/2059


Для цитирования:


Колоскова Е.М., Каркищенко В.Н., Езерский В.А., Петрова Н.В., Максименко С.В., Матвеенко Е.Л. ТРАНСГЕННЫЕ И НОКАУТНЫЕ КРОЛИКИ В БИОМЕДИЦИНЕ И ГЕНОТЕРАПИИ. CRISPR/CAS9-ТЕХНОЛОГИИ (ОБЗОР). БИОМЕДИЦИНА. 2019;(4):12-33. https://doi.org/10.33647/2074-5982-15-4-12-33

For citation:


Koloskova E.M., Karkischenko V.N., Yezersky V.A., Petrova N.V., Maksimenko S.V., Matveyenko E.L. RABBIT BIOMODELS OF HUMAN DISEASES DEVELOPED USING NEW GENOMIC TECHNOLOGIES. CRISPR/CAS9 (REVIEW). Journal Biomed. 2019;(4):12-33. (In Russ.) https://doi.org/10.33647/2074-5982-15-4-12-33

Просмотров: 321


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2074-5982 (Print)
ISSN 2074-5982 (Online)