Preview

Journal Biomed

Advanced search

Genetic Screening of a New Transgenic Mouse Line Humanized for HLA-A*02:01:01:01 and hβ2m

https://doi.org/10.33647/2713-0428-19-3E-10-24

Abstract

The development of new humanized transgenic mouse biomodels with the HLA-A*02:01:01:01 gene requires effective methods for target transgene verification in the animal genome. In the present study, we develop a system for genetic screening of animals based on real-time PCR and using highly specific primers to detect all functionally significant parts of the genetic construct. In addition, the Sanger sequencing method showed the absence of chimerism and complete correspondence between the primary nucleotide sequence of the HLA A*02:01:01:01 transgene and the developed engineered genetic construct and human gene HLA A*02:01:01:01. Based on the results of selection and genetic works with the resulting transgenic animals, three most promising sublines were identified. These lines are currently used for breeding a new line of humanized transgenic mice with the HLA-A*02:01:01:01 gene.

About the Authors

N. N. Karkischenko
Scientific Center of Biomedical Technologies of the Federal Medical and Biological Agency of Russia
Russian Federation

Nikolay N. Karkischenko - Dr. Sci. (Med.), Prof., Corr. Member of the RAS, Acad. of the Russian Academy of Rocket and Artillery Sciences, Acad. of the International Academy of Astronautics (Paris).

143442, Moscow Region, Krasnogorsk District, Svetlye Gory Village, 1



E. S. Glotova
Scientific Center of Biomedical Technologies of the Federal Medical and Biological Agency of Russia
Russian Federation

Elena S. Glotova

143442, Moscow Region, Krasnogorsk District, Svetlye Gory Village, 1



N. V. Petrova
Scientific Center of Biomedical Technologies of the Federal Medical and Biological Agency of Russia
Russian Federation

Nataliya V. Petrova

143442, Moscow Region, Krasnogorsk District, Svetlye Gory Village, 1



V. V. Slobodenyuk
Scientific Center of Biomedical Technologies of the Federal Medical and Biological Agency of Russia
Russian Federation

Vladimir V. Slobodenyuk - Cand. Sci. (Biol.).

143442, Moscow Region, Krasnogorsk District, Svetlye Gory Village, 1



N. A. Laryushina
Scientific Center of Biomedical Technologies of the Federal Medical and Biological Agency of Russia
Russian Federation

Nadezhda A. Laryushina

143442, Moscow Region, Krasnogorsk District, Svetlye Gory Village, 1



D. V. Petrov
Scientific Center of Biomedical Technologies of the Federal Medical and Biological Agency of Russia
Russian Federation

Dmitry V. Petrov

143442, Moscow Region, Krasnogorsk District, Svetlye Gory Village, 1



I. A. Vasil’eva
Scientific Center of Biomedical Technologies of the Federal Medical and Biological Agency of Russia
Russian Federation

Irina A. Vasil’eva

143442, Moscow Region, Krasnogorsk District, Svetlye Gory Village, 1



K. E. Deryabin
Scientific Center of Biomedical Technologies of the Federal Medical and Biological Agency of Russia
Russian Federation

Kirill E. Deryabin

143442, Moscow Region, Krasnogorsk District, Svetlye Gory Village, 1



References

1. Karkischenko V.N., Bolotskih L.A., Kapanadze G.D., Karkischenko N.N., Koloskova E.M., Maksimenko S.V., Matveyenko E.L., Petrova N.V., Ryabyh V.P., Revyakin A.O., Stankova N.V., Semenov H.H. Sozdanie linij transgennyh zhivotnyh-modelejs genami cheloveka NAT1 i NAT2 [Creation of lines of transgenic animal models with human NAT1 and NAT2 genes]. Biomedicina [Journal Biomed]. 2016;1:74–84. (In Russian).

2. Karkischenko V.N., Ryabyh V.P., Bolotskih L.A., Semenov H.H., Kapanadze G.D., Petrova N.V., Ezerskij V.A., Zhukova O.B., Koloskova E.M., Maksimenko S.V., Stolyarova V.N., Trubicina T.P. Fiziologo-embriologicheskie aspekty sozdaniya transgennyh myshej s integrirovannymi genami NAT1 i NAT2 cheloveka [Physiological and Embryological Aspects of Creation of Transgenic Mice with Integrated Human NAT1 and NAT2 Genes]. Biomedicina [Journal Biomed]. 2016;1:52–65. (In Russian).

3. Karkischenko V.N., Ryabyh V.P., Karkischenko N.N., Dulya M.S., Ezerskij V.A., Koloskova E.M., Lazarev V.N., Maksimenko S.V., Petrova N.V., Stolyarova V.N., Trubicina T.P. Molekulyarno-geneticheskie aspekty tekhnologii polucheniya transgennyh myshej s integrirovannymi genami N-acetiltransferazy (NAT1 i NAT2) cheloveka [Molecular genetic aspects of the technology for obtaining transgenic mice with integrated human N-acetyltransferase (NAT1 and NAT2) genes]. Biomedicina [Journal Biomed]. 2016;1:4–17. (In Russian).

4. Karkischenko N.N., Petrova N.V., Slobodenyuk V.V. Vysokospetsifichnye vidovye prajmery k genam Nat1 i Nat2 dlya sravnitel’nykh issledovanij u cheloveka i laboratornykh zhivotnykh [Highly specific species primers for the Nat1 and Nat2 genes for comparative studies in humans and laboratory animals]. Biomeditsina [Journal Biomed]. 2014;1(2):4–24. (In Russian].

5. Pomytkin I.A., Karkischenko V.N., Fokin Yu.V., Nesterov M.S., Petrova N.V. Model’ fatal’nogo ostrogo porazheniya legkikh i ostrogo respiratornogo distress-sindroma [A Model of Fatal Acute Lung Injury and Acute Respiratory Distress Syndrome]. Biomeditsina [Journal Biomed]. 2020;16(4):24–33. (In Russian). DOI: 10.33647/2713-0428-16-4-24-33.

6. Savchenko E.S., Ogneva N.S., Karkischenko N.N. Embriologicheskie aspekty sozdaniya novoj gumanizirovannoj transgennoj linii myshej s integrirovannym genom cheloveka HLAA*02:01:01:01 [Embryological Aspects of Creation a New Humanized Transgenic Mice with Integrated human HLA-A*02:01:01:01 gene]. Biomedicina [Journal Biomed]. 2022;18(4):10–23. (In Russian).

7. Aigner B., et al. Transgenic pigs as models for translational biomedical research. Journal of molecular medicine. 2010;88:653–664.

8. Bai J., Wang J., Yang Y., Wang F., He A., Zhang W. Identification of HLA-A*0201-restricted CTL Epitopes for MLAA-34-specific Immunotherapy for Acute Monocytic Leukemia. J. Immunother. 2021;44(4):141–150.

9. Beckford-Vera D.R., Gonzalez-Junca A., Janneck J.S., Huynh T.L., Blecha J.E., Seo Y., Li X., VanBrocklin H.F., Franc B.L. PET/CT Imaging of Human TNFα Using [89Zr] Certolizumab Pegol in a Transgenic Preclinical Model of Rheumatoid Arthritis. Mol. Imaging Biol. 2020;22(1):105–114.

10. Carter D.B., et al. Phenotyping of transgenic cloned piglets. Cloning and stem cells. 2002;4:131–145.

11. Chen Z., Ruan P., Wang L., Nie X., Ma X., Tan Y. T and B cell Epitope analysis of SARS-CoV-2 S protein based on immunoinformatics and experimental research. J. Cell Mol. Med. 2021.

12. Chu M.L., Moran E. The Limb-Girdle Muscular Dystrophies: Is Treatment on the Horizon? Neurotherapeutics. 2018;15(4):849–862.

13. Giraldo P., Rival-Gervier S., Houdebine L.M., Montoliu L. The potential benefits of insulators on heterologous constructs in transgenic animals. Transgenic Res. 2003;12:751–755.

14. Levedakou E.N., Popko B. Rewiring enervated: thinking LARGEr than myodystrophy. J. Neurosci. Res. 2006;84(2):237–243.

15. Ma L., Wang Y., Wang H., Hu Y., Chen J., Tan T., Hu M., Liu X., Zhang R., Xing Y., Zhao Y., Hu X., Li N. Screen and Verification for Transgene Integration Sites in Pigs. Sci. Rep. 2018;8(1):7433.

16. Paquet D., Kwart D., Chen A., et al. Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9. Nature. 2016;533:125–129.

17. Rogers C.S., et al. Disruption of the CFTR gene produces a model of cystic fibrosis in newborn pigs. Science. 2008;321:1837–1841.

18. Russell W.M.S. BRL. The Principles of Humane Experimental Technique. Med. J. Aust. [Internet]. 1960;1(13):500.

19. Schroder A.R.W., et al. HIV-1 integration in the human genome favors active genes and local hotspots. Cell. 2002;110:521–529.

20. Thomas R., Shaath H., Naik A., Toor S.M., Elkord E., Decock J. Identification of two HLA-A*0201 immunogenic epitopes of lactate dehydrogenase C (LDHC): potential novel targets for cancer immunotherapy. Cancer Immunol. Immunother. 2020;69(3):449–463.

21. Valkenburg S.A., Josephs T.M., Clemens E.B., Grant E.J., Nguyen T.H., Wang G.C., Price D.A., Miller A., Tong S.Y., Thomas P.G., Doherty P.C., Rossjohn J., Gras S., Kedzierska K. Molecular basis for universal HLA-A*0201-restricted CD8+ T-cell immunity against influenza viruses. Proc. Natl Acad. Sci. USA. 2016;113(16):4440–4445.

22. van Vuuren A.J., van Roon J.A., Walraven V., Stuij I., Harmsen M.C., McLaughlin P.M., van de Winkel J.G., Thepen T. CD64-directed immunotoxin inhibits arthritis in a novel CD64 transgenic rat model. J. Immunol. 2006;176(10):5833–5838.

23. Yang D.S., et al. Expression of Huntington’s disease protein results in apoptotic neurons in the brains of cloned transgenic pigs. Hum. Mol. Genet. 2010;19:3983–3994.


Review

For citations:


Karkischenko N.N., Glotova E.S., Petrova N.V., Slobodenyuk V.V., Laryushina N.A., Petrov D.V., Vasil’eva I.A., Deryabin K.E. Genetic Screening of a New Transgenic Mouse Line Humanized for HLA-A*02:01:01:01 and hβ2m. Journal Biomed. 2023;19(3E):10-24. (In Russ.) https://doi.org/10.33647/2713-0428-19-3E-10-24

Views: 260


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2074-5982 (Print)
ISSN 2713-0428 (Online)