Effect of Heparin on Antigen-Antibody Interaction in a Model System of the Bevacizumab Therapeutic Antibody And its Target VEGF-А165
https://doi.org/10.33647/2713-0428-19-3E-77-80
Abstract
In this work, we studied the effect of heparin on the binding process of VEGF-A165, the most common and important growth factor, and the monoclonal antibody bevacizumab by bio-layer interferometry. A complex of the full-length bevacizumab antibody with VEGF-A165 was modeled. The data obtained can be used in therapy with this antibody, as well as in the development of other therapeutic antibodies with maximum target specificity under various conditions.
About the Authors
M. P. ShevelyovaRussian Federation
Marina P. Shevelyova - Cand. Sci. (Chem.)
142290, Moscow Region, Pushchino, Nauki Ave., 3
E. L. Nemashkalova
Russian Federation
Ekaterina L. Nemashkalova - Cand. Sci. (Biol.)
142290, Moscow Region, Pushchino, Nauki Ave., 3
E. I. Deryusheva
Russian Federation
Evgeniya I. Deryusheva - Cand. Sci. (Phis.-Math.)
142290, Moscow Region, Pushchino, Nauki Ave., 3
References
1. Adamis A.P., Shima D.T. The role of vascular endothelial growth factor in ocular health and disease. Retina. 2005;25:111–118. DOI: 10.1097/00006982-200502000-00001.
2. Apte R.S., Chen D.S., Ferrara N. VEGF in Signaling and Disease: Beyond Discovery and Development. Cell. 2019;176:1248–1264. DOI: 10.1016/j.cell.2019.01.021.
3. Engelberg H. Plasma heparin levels in normal man. Circulation. 1961;23:578–581. DOI: 10.1161/01.cir.23.4.578.
4. Ferrara N. VEGF-A: A critical regulator of blood vessel growth. Eur. Cytokine Netw. 2009;20:158–163. DOI: 10.1684/ecn.2009.0170.
5. Garcia J., Hurwitz H.I., Sandler A.B., Miles D., Coleman R.L., Deurloo R., Chinot O.L. Bevacizumab (Avastin®) in cancer treatment: A review of 15 years of clinical experience and future outlook. Cancer Treat. Rev. 2020;86:102017. DOI: 10.1016/j.ctrv.2020.102017.
6. Gitay-Goren H., Soker S., Vlodavsky I., Neufeld G. The binding of vascular endothelial growth factor to its receptors is dependent on cell surface-associated hep-arin-like molecules. J. Biol. Chem. 1992;267:6093–6098. DOI: 10.1016/S0021-9258(18)42666-X.
7. Keyt B.A., Berleau L.T., Nguyen H.V., Chen H., Heinsohn H., Vandlen R., Ferrara N. The carboxyl-terminal domain (111-165) of vascular endothelial growth factor is critical for its mitogenic potency. J. Biol. Chem. 1996;271:7788–7795. DOI: 10.1074/jbc.271.13.7788.
8. Nemashkalova E.L., Shevelyova M.P., Machulin A.V., Lykoshin D.D., Esipov R.S., Deryusheva E.I. Heparin-Induced Changes of Vascular Endothelial Growth Factor (VEGF165) Structure. Biomolecules. 2023;13(1):98. DOI: 10.3390/biom13010098.
9. Onishi A., Ange K.St., Dordick J.S., Linhardt R.J. Heparin and anticoagulation. Front. Biosci. (Landmark Ed.) 2016;21(7):1372–1392. DOI: 10.2741/4462.
10. Papadopoulos N., Martin J., Ruan Q., et al. Binding and neutralization of vascular endothelial growth factor (VEGF) and related ligands by VEGF Trap, ranibizumab and bevacizumab. Angiogenesis. 2012;15:171–185. DOI: 10.1007/s10456-011-9249-6.
Review
For citations:
Shevelyova M.P., Nemashkalova E.L., Deryusheva E.I. Effect of Heparin on Antigen-Antibody Interaction in a Model System of the Bevacizumab Therapeutic Antibody And its Target VEGF-А165. Journal Biomed. 2023;19(3E):77-80. (In Russ.) https://doi.org/10.33647/2713-0428-19-3E-77-80