Preview

Journal Biomed

Advanced search

Development of a Clathrate Complex of 3-(2-Phenylethyl)-2-Thioxo-1,3-Thiazolidin-4-one with β-Cyclodextrin and Studying its Antitumor Activity

https://doi.org/10.33647/2713-0428-20-3E-14-19

Abstract

This work is aimed at developing and studying the antitumor action of a clathrate complex of a rhodanine derivative (RD) of the 3-(2-phenylethyl)-2-thioxo-1,3-thiazolidin-4-one compound with β-cyclodextrin. In terms of physicochemical and biopharmaceutical properties, the RD clathrate complex with β-cyclodextrin with a mass ratio of 1:5 and an average particle size of 40.5 nm is a promising pharmacologically active drug. The developed RD clathrate complex with β-cyclodextrin exhibits a pronounced antiproliferative and antimetastatic effect against epidermoid Lewis lung carcinoma tumors. RD as part of a clathrate complex with β-cyclodextrin enables effective inhibition of tumor growth and metastatic processes, increasing the average life expectancy of animals, reducing the number of metastases in the lungs, and suppressing cell viability in an MTT assay. The results obtained confirm the feasibility of further research into the RD clathrate complex with β-cyclodextrin as a means for treating oncological diseases caused by hyperexpression of GSK-3β both as an independent agent and in a combination therapy with other antitumor agents. Due to its physiological safety, the RD clathrate complex with β-cyclodextrin is a promising antitumor agent for practical application.

About the Authors

Yu. E. Antipova
Northern State Medical University of the Ministry of Health Care of Russia
Russian Federation

Yulia E. Antipova 

163069, Arkhangelsk, Troitskiy Ave., 5

 



K. T. Erimbetov
Research Technological Center “Preventive Information Medicine”
Russian Federation

Kenes T. Erimbetov, Dr. Sci. (Biol.) 

249030, Kaluga Region, Obninsk, Kievskoe Highway, 3, Building 2, Office 8



O. V. Buyuklinskaya
Saint Petersburg State Chemical and Pharmaceutical University of the Ministry of Health Care of Russia
Russian Federation

Olga V. Buyuklinskaya, Dr. Sci. (Med.), Assoc. Prof. 

197376, Saint Petersburg, Professora Popova Str., 14, lit. A



References

1. Erimbetov K.T., Zemlyanoy R.A., Obvintseva O.V., Pyankova E.V., Mikhailov V.V. Signal'nye mekhanizmy kak faktory fiziologicheskoy regulyatsii: rodaniny i misheni kinazy glikogensintazy 3β [Signaling mechanisms as factors of physiological regulation: Rhodanines and targets of glycogen synthase kinase 3β]. Problemy biologii produktivnykh zhivotnykh [Problems of Productive Animal Biology]. 2021;1:41–54. (In Russian). DOI: 10.25687/1996-6733.prodanimbiol.2021.1.41-54

2. Zemlyanoy R.A., Erimbetov K.T., Fedorova A.V., Goncharova A.Ya., Bondarenko E.V. Razrabotka aktivnogo klatrata 3-(2-feniletil)-2-tiokso-1,3 tiazolidin-4-ona s β-tsiklodekstrinom i izuchenie ego biodostupnosti [Development of an active clathrate of 3-(2-phenylethyl)-2-thioxo-1,3 thiazolidin-4-one with β-cyclodextrin and study of its bioavailability]. Mezhdunarodnyy vestnik veterinarii [International Bulletin of Veterinary Medicine]. 2020;3:58–64. (In Russian). DOI: 10.17238/issn2072-2419.2020.3.58

3. Beurel E., Grieco S.F., Jope R.S. Glycogen synthase kinase-3 (GSK3): Regulation, actions, and diseases. Pharmacol. Ther. 2015;148:114–131. DOI: 10.1016/j.pharmthera.2014.11.016

4. He R., Du S., Lei T., Xie X., Wang Y. Glycogen synthase kinase 3β in tumorigenesis and oncotherapy (Review). Oncol. Rep. 2020;44(6):2373–2385. DOI: 10.3892/or.2020.7817

5. Hoffmeister L., Diekmann M., Brand K., Huber R. GSK3: A kinase balancing promotion and resolution of inflammation. Cells. 2020;9(4):820. DOI: 10.3390/cells9040820

6. Lin J., Song T., Li C., Mao W. GSK-3β in DNA repair, apoptosis, and resistance of chemotherapy, radiotherapy of cancer. Biochim. Biophys. Acta Mol. Cell Res. 2020;1867(5):118659. DOI: 10.1016/j.bbamcr.2020.118659

7. Martinez A., Alonso M., Castro A., Dorronsoro I., Gelpí J.L., Luque F.J., Pérez C., Moreno F.J. SAR and 3D-QSAR Studies on thiadiazolidinone derivatives: Exploration of structural requirements for glycogen synthase kinase 3 inhibitors. J. Med. Chem. 2005;48(23):7103–7112. DOI: 10.1021/jm040895g

8. McCubrey J.A., Cocco L. GSK-3 signaling in health. Adv. Biol. Regul. 2017;65:1-4. DOI: 10.1016/j.jbior.2017.06.004.

9. Patel P., Woodgett J.R. Glycogen synthase kinase 3: A kinase for all pathways? Curr. Top Dev. Biol. 2017;123:277–302. DOI: 10.1016/bs.ctdb.2016.11.011

10. Pecoraro C., Faggion B., Balboni B., Carbone D., Peters G.J., Diana P., Assaraf Y.G., Giovannetti E. GSK3β as a novel promising target to overcome chemoresistance in pancreatic cancer. Drug Resist. Updat. 2021;58:100779. DOI: 10.1016/j.drup.2021.100779

11. Uehara M., Domoto T., Takenaka S., Takeuchi O., Shimasaki T., Miyashita T., Minamoto T. Glycogen synthase kinase 3β: The nexus of chemoresistance, invasive capacity, and cancer stemness in pancreatic cancer. Cancer Drug Resist. 2024;7:4. DOI: 10.20517/cdr.2023.84

12. Wei J., Wang J., Zhang J., Yang J., Wang G., Wang Y. Development of inhibitors targeting glycogen synthase kinase-3β for human diseases: Strategies to improve selectivity. Eur. J. Med. Chem. 2022;236:114301. DOI: 10.1016/j.ejmech.2022.114301


Review

For citations:


Antipova Yu.E., Erimbetov K.T., Buyuklinskaya O.V. Development of a Clathrate Complex of 3-(2-Phenylethyl)-2-Thioxo-1,3-Thiazolidin-4-one with β-Cyclodextrin and Studying its Antitumor Activity. Journal Biomed. 2024;20(3E):14-19. (In Russ.) https://doi.org/10.33647/2713-0428-20-3E-14-19

Views: 123


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2074-5982 (Print)
ISSN 2713-0428 (Online)