Preview

Journal Biomed

Advanced search

Species Determination of Soviet Chinchilla Breed Rabbits by PCR of a Cytochrome b Gene Fragment Followed by Sequencing of Amplification Products

https://doi.org/10.33647/2074-5982-21-2-8-16

Abstract

The article presents data on determining the suitability of the CYTB gene for typing rabbits of the Soviet Chinchilla breed. The detection of the target site of the CYTB gene was carried out by real-time PCR using highly specific primers and an amplifier probe; the PCR product was used in the Sanger sequencing reaction. The experiment determined that the mitochondrial cytochrome b gene can act as a marker for the genetic assessment of the purity of the Soviet Chinchilla rabbit breed and the suitability of individuals for further breeding. The method of sequencing of this section of the cytochrome b gene showed its efficacy and practical significance, allowing animals to be screened over a fairly short period of time for their use in breeding and genetic work or other research purposes.

About the Authors

V. N. Karkischenko
Scientific Center of Biomedical Technologies of the Federal Medical and Biological Agency of Russia
Russian Federation

Vladislav N. Karkischenko, Dr. Sci. (Med.), Prof. 

143442, Moscow Region, Krasnogorsk District, Svetlye Gory Village, 1



N. V. Petrova
Scientific Center of Biomedical Technologies of the Federal Medical and Biological Agency of Russia
Russian Federation

Nataliya V. Petrova 

143442, Moscow Region, Krasnogorsk District, Svetlye Gory Village, 1



V. V. Slobodenyuk
Scientific Center of Biomedical Technologies of the Federal Medical and Biological Agency of Russia
Russian Federation

Vladimir V. Slobodenyuk, Cand. Sci. (Biol.) 

143442, Moscow Region, Krasnogorsk District, Svetlye Gory Village, 1



E. M. Koloskova
All-Russian Research Institute of Physiology, Biochemistry and Animal Nutrition — Branch of the Federal Scientific Centre of Animal Husbandry — All-Russian Institute of Animal Husbandry named after Acad. L.K. Ernst
Russian Federation

Elena M. Koloskova, Cand. Sci. (Biol.) 

249013, Kaluga Region, Borovsk, Institut Village 



N. A. Ledneva
Scientific Center of Biomedical Technologies of the Federal Medical and Biological Agency of Russia
Russian Federation

Nadezhda A. Ledneva 

143442, Moscow Region, Krasnogorsk District, Svetlye Gory Village, 1



M. A. Savina
Scientific Center of Biomedical Technologies of the Federal Medical and Biological Agency of Russia
Russian Federation

Mariya A. Savina 

143442, Moscow Region, Krasnogorsk District, Svetlye Gory Village, 1



E. V. Panina
Scientific Center of Biomedical Technologies of the Federal Medical and Biological Agency of Russia
Russian Federation

Elena V. Panina, Cand. Sci. (Biol.), Assoc. Prof.

143442, Moscow Region, Krasnogorsk District, Svetlye Gory Village, 1



A. G. Berzina
Scientific Center of Biomedical Technologies of the Federal Medical and Biological Agency of Russia
Russian Federation

Asya G. Berzina, Cand. Sci. (Biol.) 

143442, Moscow Region, Krasnogorsk District, Svetlye Gory Village, 1



References

1. Ezerskii V.A., Koloskova E.M. Geneticheskaya konstrukcia dlya zameshenia gena kislogo sivorotochnogo proteina krolika pri ispolsovanii CRISPR/Cas9 metoda [Genetic construction for replacement of rabbit whey acidic protein gene using the CRISPR/Cas9 method]. Problemy biologii produktivnykh zhivotnykh [Problems of biology of productive animals]. 2019;4:23–35. (In Russian).

2. Ezerskii V.A., Shishimorova M.S., Tevkin S.I., TrubitsinaT.P., Koloskova E.M., Bezborodova O.A., et al. Integratsiyai i tkanespetsificheskaya ekspressiya gena laktoferrina cheloveka v molochnoi zheleze transgennykh krolikov [Integration and tissue-specifi c expression of human lactoferrin gene in mammary gland of transgenic rabbits]. Problemy biologii produktivnykh zhivotnykh [Problems of biology of productive animals]. 2013;4:33–52. (In Russian).

3. Kolosko-va E.M., Karkischenko V.N., Ezerskii V.A., Petrova N.V., Maksimenko S.V., Transgennie i nokautnie kroliki v biomedicine i genoterapii. CRISPR/Cas9-tehnologii (obzor) [Rabbit biomodels of human diseases developed using new genomic technologies. Crispr/cas9 (review)]. Biomeditsina [Journal Biomed]. 2019;15(4):12–33. (In Russian). DOI: 10.33647/2074-5982-15-4-12-33.

4. Makarova M.N, Makarov V.G. Ispolzovanie krolikov v doklinicheskih issledovaniah [Rabbits in preclinical research]. Laboratornie givotnie dlya nauchnih issledovanij [Laboratory animals for science]. 2023;3(6):18–43. (In Russian). DOI: 10.57034/2618723X-2023-03-0.

5. Yurashhik S.V. Krolikovodstvo [Rabbit breeding]. Uch. posob. dlya visshih uchebnih zavedenij [Study guide for higher education institutions]. Grodno: UO “GGAU”, 2005:412 (In Russian).

6. Fan J., Challah M., Watanabe T. Transgenic rabbit models for biomedical research: current status, basic methods and future perspectives. Pathol. Int. 1999;49(7):583–594. DOI: 10.1046/j.1440-1827.1999.00923.x.

7. Fan J., Wang Y., Chen Y.E. Genetically Modified Rabbits for Cardiovascular Research. Front. Genet. 2021;12:614379. DOI: 10.3389/fgene.2021.614379.

8. Okumura N., Matsumoto D., Fukui Y., Teramoto M., et al. Feasibility of cell-based therapy combined with descemetorhexis for treating Fuchsen do the lialcorneal dystrophy in rabbit model. PLoSOne. 2018;13(1):e0191306. DOI:10.1371/journal.pone. 0191306.

9. Kamaruzaman N.A., Kardia E., Kamaldin N., Latahir A.Z., Yahaya B.H. The rabbit as a model for studying lung disease and stemcelltherapy. Biomed. Res. Int. 2013;691830. DOI: 10.1155/2013/691830.

10. Kinoshita S., Koizumi N., Ueno M., et al. Injection of cultured cells with a ROCK inhibitor for bullouskerato pathy. N. Engl. J. Med. 2018;378:995–1003.

11. Mage R.G., Lanning D., Knight K.L. B cell and antibody repertoire development in rabbits: the requirement of gut-associated lymphoid tissues. Dev. Comp. Immunol. 2006;30(1–2):137–153. DOI: 10.1016/j.dci.2005.06.017.

12. Mage R.G., Esteves P.J., Rader C. Rabbit models of human diseases for diagnostics and therapeutics development. Dev. Comp. Immunol. 2019;92:99–104. DOI: 10.1016/j.dci.2018.10.003.

13. Sebbag L., Mochel J.P. An eye on the dog as the scientist’s best friend for translation al research in ophthalmology: Focus on the ocular surface. Med. Res. Rev. 2020;40(6):2566–2604. DOI: 10.1002/med.21716.

14. Soares J., Pinheiro A., Esteves P.J. The rabbit as an animal model to study innate immunity genes: Is it better than mice? Front. Immunol. 2022;13:981815. DOI: 10.3389/fimmu.2022.981815.

15. Young S., Forsberg-Nilsson K., Good J.M., Lander E.S., et al. Rabbit genome analysis revealsapolygenic basis for phenotypic change during domestication. Science. 2014;346(62000):1074–1079. DOI: 10.1126/science.1253714.

16. Zernii E.Y., Baksheeva V.E., Iomdina E.N., et al. Rabbit Models of Ocular Diseases: New Relevance for Classical Approaches. CNS Neurol. Disord. Drug Targets. 2016;15(3):267–291. DOI: 10.2174/1871527315666151110124957.

17. Zhang Z., Liu H., Qian Q., Wang L., Yuan H. Advances in the Isolation of Specific Monoclonal Rabbit Antibodies. Frontiers in Immunology. 2017;8:494. DOI: 10.3389/fimmu.2017.00494.


Review

For citations:


Karkischenko V.N., Petrova N.V., Slobodenyuk V.V., Koloskova E.M., Ledneva N.A., Savina M.A., Panina E.V., Berzina A.G. Species Determination of Soviet Chinchilla Breed Rabbits by PCR of a Cytochrome b Gene Fragment Followed by Sequencing of Amplification Products. Journal Biomed. 2025;21(2):8-16. (In Russ.) https://doi.org/10.33647/2074-5982-21-2-8-16

Views: 51


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2074-5982 (Print)
ISSN 2713-0428 (Online)