Preview

Journal Biomed

Advanced search

Realities in the Creation of Humanized Transgenic Personalized Animals for Biomedical Research: Transition from Plasmid to CRISPR/Cas9 Ribonucleoprotein Complex

https://doi.org/10.33647/2074-5982-21-3-12-24

Abstract

Creation of humanized genetically modified animals for biomedical research is an important direction in the activity of the Scientific Center of Biomedical Technologies of the Federal Medical and Biological Agency (FMBA) of Russia. Since 2013, the Center has obtained more than 20 lines of transgenic, knockout, and transgenically-knockout mouse biomodels using classical transgenesis and the plasmid version of the CRISPR/Cas9 technology. The main specialized lines involve humanized transgenic mouse biomodels carrying alleles HLA class I — HLA-В*, HLA-В**, HLA-В***, HLA-С*, HLA-B*07:02, HLA-С*07:02, HLA-A*02:01, HLA-В*** КО, HLA-A** КО, HLA-B**** КО, HLA-С** КО, as well as NAT1, NAT2, АСЕ2 hom, hACE2-Tom (HDRKI), SMN2 (S2), PrPSc, АСЕ2 hom / HLA-C**, β2m mus KO, PrP КО, STE24 КО, SMN (S6) КО, SMN2 КО, PrP КО / PrPSc, NAT1 KO, NAT2 KO. In this article, we review the genetic constructs and methods used to produce genetically modified animals. The article summarizes the long-term experience of using the plasmid variant and discusses the need to switch to the CRISPR/Cas9 ribonucleoprotein complex in the view of its high efficiency and specificity, high frequency of targeted modifications, the ability to use multiple gRNAs, and the insertion of a single copy of the HDR-DNA template (transgene). We also explore the possibility of replacing imported reagents and kits with domestic products.

About the Authors

N. N. Karkischenko
Scientific Center of Biomedical Technologies of the Federal Medical and Biological Agency of Russia
Russian Federation

Nikolay N. Karkischenko - Academician of the Russian Academy of Rocket and Artillery Sciences, Corresponding Member of the Russian Academy of Sciences, Dr. Sci. (Med.), Prof.

143442, Moscow Region, Krasnogorsk District, Svetlye gory Village, 1



E. M. Koloskova
All-Russian Research Institute of Physiology, Biochemistry and Animal Nutrition — Branch of the Federal Scientific Center of Animal Husbandry — The All-Russian Institute of Animal Husbandry named after Academician L.K. Ernst
Russian Federation

Elena M. Koloskova - Cand. Sci. (Biol.).

Kaluga Region, Borovsk, Institut Village



N. V. Petrova
Scientific Center of Biomedical Technologies of the Federal Medical and Biological Agency of Russia
Russian Federation

Natalia V. Petrova

143442, Moscow Region, Krasnogorsk District, Svetlye gory Village, 1



References

1. Karkischenko N.N., Ryabykh V.P., Karkischenko V.N., Koloskova E.M. Sozdanie gumanizirovannykh myshey dlya farmakotoksikologicheskikh issledovaniy (uspekhi, neudachi I perspektivy) [Creation of humanized mice for pharmacotoxicological research (successes, failures and prospects)]. Biomeditsina [Journal Biomed]. 2014;1(3):4–22. (In Russian).

2. Karkischenko V.N., Ryabykh V.P., Karkischenko N.N., Dulya M.S., Ezerskiy V.A., Koloskova E.M., Lazarev V.N., Maksimenko S.V., Petrova N.V., Stolyarova V.N., Trubitsyna T.P. Molekulyarno-geneticheskie aspekty tekhnologii polucheniya transgennykh myshej s integrirovannymi genami N-atsetiltransferazy (NAT1 i NAT2) cheloveka [Molecular and genetic aspects of the technology for producing transgenic mice with integrated genes of human N-acetyltransferase (NAT1 and NAT2)]. Biomeditsina [Journal Biomed]. 2016;1:4–17. (In Russian).

3. Karkischenko V.N., Bolotskikh L.A., Kapanadze G.D., Karkischenko N.N., Koloskova E.M., Maksimenko S.V., Matveyenko E.L., Petrova N.V., Ryabykh V.P., Revyakin A.O., Stankova N.V., Semenov Kh. Kh. Sozdaniye liniy transgennykh zhivotnykh-modeley s genami cheloveka NAT1 i NAT2 [Creation of lines of transgenic animal models with human genes NAT1 and NAT2]. Biomeditsina [Journal Biomed]. 2016;1:74–84. (In Russian).

4. Karkischenko V.N., Berzina A.G., Petrova N.V., Pomytkin I.A., Glotova E.S., Petrov D.V., Taboyakova L.A., Bolotskih L.A., Laryushina N.А. Dokazatel'stvo nalichiya celevyh belkov — β2m hom i HLA u gumanizirovannyh transgennyh myshej linij HLA-A*02:01, HLA-B*07:02 i HLA-C*07:02 [Evidence for the Presence of β2m hom Target Proteins and HLA in Humanized Transgenic Mice of HLA-A*02:01, HLA-B*07:02, and HLA-C*07:02 Lines]. Biomeditsina [Journal Biomed]. 2024;20(2):32–44. (In Russian). DOI: 10.33647/2074-5982-20-2-32-44

5. Karkischenko N.N., Lazarev V.N., Manuvera V.A., Bobrovsky P.A., Petrova N.V., Koloskova E.M., Glotova E.S. Principy sozdaniya genno-inzhenernoj konstrukcii dlya polucheniya gumanizirovannyh transgennyh myshej, nesushchih gen HLA-C*07:02:01:01, kak proobraz innovacionnyh transgenno-nokautnyh biomodelej [Principles of Creation of a Genetic Engineering Construction for Obtaining Humanized Transgenic Mice with HLA-C*07:02:01:01, as a Promote of Innovative Transgenic and Knockout Biomodels]. Biomeditsina [Journal Biomed]. 2024;20(1):8–20. (In Russian). DOI: 10.33647/2074-5982-20-1-8-20.

6. Karkischenko V.N., Petrova N.V., Savchenko E.S., Ogneva N.S., Koloskova E.M., Maksimenko S.V., Manuvera V.A., Bobrovsky P.A., Lazarev V.N. Sozdanie polnih gibridnih DNK konstrukcij s genom cheloveka HLA-A*02:01:01:01 DOI: 10.33647/2713-0428-19-3E-10-24.

7. Karkischenko N.N., Glotova E.S., Petrova N.V., Slobodenyuk V.V., Laryushina N.A., Petrov D.V., Vasil’eva I.A., Deryabin K.E. Geneticheskij skrining novoj transgennoj gumanizirovannoj po HLA-A*02:01:01:01 i hβ2m linii myshej [Genetic Screening of a New Transgenic Mouse Line Humanized for HLA-A*02:01:01:01 and hβ2m]. Biomeditsina [Journal Biomed]. 2023;19(3E):10–24. (In Russian). DOI: 10.33647/2713-0428-19-3E-10-24.

8. Savchenko E.S., Ogneva N.S., Karkischenko N.N. Embriologicheskie aspekty sozdaniya novoj gumanizirovannoj transgennoj linii myshej s integrirovannym genom cheloveka HLA-A*02:01:01:01 Embryological Aspects of Creating a New Humanized Transgenic Mouse Line with an Integrated Human Gene HLA-A*02:01:01:01]. Biomeditsina [Journal Biomed]. 2022;18(4):10–23. (In Russian). DOI: 10.33647/2074-5982-18-4-10-23.

9. Chang H., Pannunzio N.R., Adachi N., Lieber M.R. Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nat. Rev. Mol. Cell Biol. 2017;18(8):495–506. DOI: 10.1038/nrm.2017.48.

10. Concordet J.P., Haeussler M. CRISPOR: intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens. Nucleic Acids Res. 2018;46(W1):W242–W245. DOI: 10.1093/nar/gky354.

11. Cong L., Ran F.A., Cox D., Lin S., Barretto R., Habib N., Hsu P.D., Wu X., Jiang W., Marraffini L.A., Zhang F. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339(6121):819–823. DOI: 10.1126/science.1231143.

12. Heyer W.D., Ehmsen K.T., Liu J. Regulation of homologous recombination in eukaryotes. Annu. Rev. Genet. 2010;44:113–139. DOI: 10.1146/annurev-genet-051710-150955.

13. Hsu P.D., Scott D.A., Weinstein J.A., Ran F.A., Konermann S., Agarwala V., Li Y., Fine E.J., Wu X., Shalem O., Cradick T.J., Marraffini L.A., Bao G., Zhang F. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol. 2013;31(9):827–832. DOI: 10.1038/nbt.2647.

14. Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J.A., Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337(6096):816–821.

15. Mashiko D., Fujihara Y., Satouh Y., Miyata H., Isotani A., Ikawa M. Generation of mutant mice by pronuclear injection of circular plasmid expressing Cas9 and single guided RNA. Sci. Rep. 2013;3:3355. DOI: 10.1038/srep03355

16. Montague T.G., Cruz J.M., Gagnon J.A., Church G.M., Valen E. CHOPCHOP: a CRISPR/Cas9 and TALEN web tool for genome editing. Nucleic Acids Res. 2014;42(Web Server issue):W401–W407. DOI: 10.1093/nar/gku410

17. Symington L.S., Gautier J. Double-strand break end resection and repair pathway choice. Annu. Rev. Genet. 2011;45:247–271. DOI: 10.1146/annurev-genet-110410-132435.


Review

For citations:


Karkischenko N.N., Koloskova E.M., Petrova N.V. Realities in the Creation of Humanized Transgenic Personalized Animals for Biomedical Research: Transition from Plasmid to CRISPR/Cas9 Ribonucleoprotein Complex. Journal Biomed. 2025;21(3):12-24. (In Russ.) https://doi.org/10.33647/2074-5982-21-3-12-24

Views: 14


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2074-5982 (Print)
ISSN 2713-0428 (Online)