Preview

Journal Biomed

Advanced search

Hepatoprotective Properties of Choline Bitartrate in Piglets

https://doi.org/10.33647/2074-5982-21-3-107-112

Abstract

Various methionine metabolites used in the treatment of experimental liver diseases in animals demonstrate hepatoprotective properties. The prophylactic use of choline was shown to provide intensive liver regeneration. In this study, we aim to evaluate the hepatoprotective effects of choline bitartrate in piglets, with an assessment of cytokine expression associated with the hepatobiliary system. The research was conducted using experimental pigs reared at the age of 45 days, which corresponds to the period of their early development. The use of choline bitartrate significantly reduces the expression of β transforming growth factor (TGF-β1) and pro-inflammatory interleukin 6 (IL-6) genes, at the same time as providing a significant reduction in total cholesterol and a proportional increase in HDL concentration, which is a classical anti-atherogenic factor.

About the Author

K. S. Ostrenko
All-Russian Research Institute of Physiology, Biochemistry and Animal Nutrition — Branch of the Federal Scientific Center of Animal Husbandry — The All-Russian Institute of Animal Husbandry named after Academician L.K. Ernst
Russian Federation

Konstantin S. Ostrenko - Dr. Sci. (Biol.).

249013, Kaluga Region, Borovsk, Institut Village



References

1. Deficit holina v organizme, klinicheskie proyavleniya i otdalennye posledstviya [Choline deficiency in the body, clinical manifestations and long-term consequences]. Pediatrics. Consilium Medicum. 2022;1:66–71. (In Russian). DOI: 10.26442/26586630.2022.1.201510.

2. Karkischenko V.N., Dulya M.S., Ageldinov R.A., Lyublinskiy S.L., Karkischenko N.N. Liposomirovannaya forma ekstrakta prepucial'noj zhelezy kabargi — novoe sredstvo adaptogennogo dejstviya [A Liposomal Composition of Musc Deer Preputial Gland Extract as a New Agent of Adaptogenic Action]. Biomeditsina [Journal Biomed]. 2019;15(4):34–45. (In Russian). DOI: 10.33647/20745982-15-4-34-45.

3. Klesov R.A., Karkischenko N.N., Stepanova O.I., Matveyenko E.L. Lekarstvennoe porazhenie gastrointestinal'noj sistemy i puti ee korrekcii (obzor) [Drug-Induced Injury of the Gastrointestinal System and Methods for Its Correction (A Review)]. Biomeditsina [Journal Biomed]. 2020;16(3):14–34. (In Russian). DOI: 10.33647/20745982-16-3-14-34.

4. Annoni G., Weiner F.R., Zern M.A. Increased transforming growth factor-beta 1 gene expression in human liver disease. J. Hepatol. 1992;14(2-3):259–264. DOI: 10.1016/0168-8278(92)90168-o.

5. Cole L.K., Vance J.E., Vance D.E. Phosphatidylcholine biosynthesis and lipoprotein metabolism. Biochem. Biophys. Acta. 2012;1821(5):754–761. DOI: 10.1016/j.bbalip.2011.09.009.

6. Corbin K.D., Abdelmalek M.F., Spencer M.D., da Costa K.A., Galanko J.A., Sha W., Suzuki A., Guy C.D., Cardona D.M., Torquati A., Diehl A.M., Zeisel S.H. Genetic signatures in choline and 1-carbon metabolism are associated with the severity of hepatic steatosis. FASEB J. 2013;27(4):1674–1689. DOI: 10.1096/fj.12219097.

7. Fischer L.M., da Costa K.A., Kwock L., Stewart P.W., Lu T.S., Stabler S.P., Allen R.H., Zeisel S.H. Sex and menopausal status influence human dietary requirements for the nutrient choline. Am. J. Clin. Nutr. 2007;85(5):1275–1285. DOI: 10.1093/ajcn/85.5.1275.

8. Haukeland J.W., Damås J.K., Konopski Z., Løberg E.M., Haaland T., Goverud I., Torjesen P.A., Birkeland K., Bjøro K., Aukrust P. Systemic inflammation in nonalcoholic fatty liver disease is characterized by elevated levels of CCL2. J. Hepatol. 2006;44(6):1167–1174. DOI: 10.1016/j.jhep.2006.02.011.

9. Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods. 2001;25(4):402–408.

10. Mato J.M., Martínez-Chantar M.L., Lu S.C. Methionine metabolism and liver disease. Annu Rev. Nutr. 2008;28:273–293. DOI: 10.1146/annurev.nutr.28.061807.155438.

11. Mehedint M.G., Zeisel S.H. Choline's role in maintaining liver function: new evidence for epigenetic mechanisms. Curr. Opin Clin. Nutr. Metab. Care. 2013;16(3):339–345. DOI: 10.1097/MCO.0b013e3283600d46.

12. Pagadala M.R., Mc Cullough A.J. The relevance of liver histology to predicting clinically meaningful outcomes in nonalcoholic steatohepatitis. Clin. Liver Dis. 2012;16(3):487–504. DOI: 10.1016/j.cld.2012.05.006.

13. Shimizu K., Onishi M., Sugata E., Sokuza Y., Mori C., Nishikawa T., Honoki K., Tsujiuchi T. Disturbance of DNA methylation patterns in the early phase of hepatocarcinogenesis induced by a choline-deficient L-amino acid-defined diet in rats. Cancer Sci. 2007;98(9):1318–1322. DOI: 10.1111/j.1349-7006.2007.00564.x.

14. Zeisel S.H. Gene response elements, genetic polymorphisms and epigenetics influence the human dietary requirement for choline. IUBMB Life. 2007;59(6):380–387. DOI: 10.1080/15216540701468954.


Review

For citations:


Ostrenko K.S. Hepatoprotective Properties of Choline Bitartrate in Piglets. Journal Biomed. 2025;21(3):107-112. (In Russ.) https://doi.org/10.33647/2074-5982-21-3-107-112

Views: 7


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2074-5982 (Print)
ISSN 2713-0428 (Online)