Preview

Journal Biomed

Advanced search

Effect of Choline Bitartrate on the Gut Microbiota of Piglets

https://doi.org/10.33647/2074-5982-21-4-44-48

Abstract

Oxidative stress (OS) associated with inflammatory processes affects the intestinal microbiota. Choline can act as a methyl donor and reduce the level of glutathione in the brain, inhibiting the development of OS and inflammatory processes. In turn, this contributes to prevention of dysbiotic disorders. In this work, we study the effect of choline bitartrate (CB) on the microbiota of the large intestine of pigs during the period of intensive growth. CB introduced as part of the main diet was found to affect the qualitative and quantitative composition of the  microbiota. Thus, the proportion of normoflora increased, while the proportion and representation of pathogenic and  opportunistic microorganisms decreased. CB contributed to the work of microorganisms secreting metabolites with high neurotransmitter activity and led to an increase in the proportion of phylum producers of lactate, an activator of intestinal macrophages.

About the Authors

N. V. Belova,
All-Russian Research Institute of Physiology, Biochemistry and Animal Nutrition — Branch of the Federal Scientific Centre of Animal Husbandry — All-Russian Institute of Animal Husbandry named after Acad. L.K. Ernst
Russian Federation

Nadezhda V. Belova, Cand. Sci. (Biol.)

249013, Kaluga Region, Borovsk, Institute Village



K. S. Ostrenko
All-Russian Research Institute of Physiology, Biochemistry and Animal Nutrition — Branch of the Federal Scientific Centre of Animal Husbandry — All-Russian Institute of Animal Husbandry named after Acad. L.K. Ernst
Russian Federation

Konstsntin S. Ostrenko, Dr. Sci. (Biol.)

249013, Kaluga Region, Borovsk, Institute Village



E. M. Koloskova
All-Russian Research Institute of Physiology, Biochemistry and Animal Nutrition — Branch of the Federal Scientific Centre of Animal Husbandry — All-Russian Institute of Animal Husbandry named after Acad. L.K. Ernst
Russian Federation

Elena M. Koloskova, Cand. Sci. (Biol.)

249013, Kaluga Region, Borovsk, Institute Village



References

1. Karkischenko V.N., Fokin Yu.V., Lyublinsky S.L., Pomytkin I.A., Alimkina O.V., Taboyakova L.A., Kaptsov A.V., Borisova M.M., Karkischenko N.N. Central'nye mekhanizmy liposomirovannyh form acetilholina i insulina posredstvom analiza kognitivnyh, psihoemocional'nyh i povedencheskih parametrov krys [The central mechanisms of liposomated forms of acetylcholine and insulin through the analysis of cognitive, psycho-emotional and behavioral parameters of rats]. Biomeditsina [Journal Biomed]. 2022;18(1):32–55. (In Russian)].

2. Karkischenko N.N., Fokin Yu.V., Lyublinsky S.L. Farmakologicheskaya regulyaciya kognitivnyh funkcij i intracentral'nyh otnoshenij liposomirovannymi acetilholinom i insulinom [Pharmacological regulation of cognitive functions and intracentral relations by liposomated acetylcholine and insulin]. Experimental and Clinical Pharmacology. 2023;86(11S):70 (In Russian)]. DOI: 10.30906/ekf2023-86s-70.

3. Arce-Cordero J.A., Fan P., Monteiro H.F., Dai X., Jeong K.C., Faciola A.P. Effects of choline chloride on the ruminal microbiome at 2 dietary neutral detergent fiber concentrations in continuous culture. J. Dairy Sci. 2022;105(5):4128–4143. DOI: 10.3168/jds.2021-21591.

4. Blusztajn J.K., Slack B.E., Mellott T.J. Neuroprotective Actions of Dietary Choline. Nutrients. 2017;28(9(8)):815. DOI: 10.3390/nu9080815.

5. Kansakar U., Trimarco V., Mone P., Varzideh F., Lombardi A., Santulli G. Choline supplements: An update. Front Endocrinol (Lausanne). 2023;14:1148166. DOI: 10.3389/fendo.2023.1148166.

6. Lupp C., Robertson M.L., Wickham M.E., Sekirov I., Champion O.L., Gaynor E.C., Finlay B.B. Hostmediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae. Cell Host Microbe. 2007;16;2(2):119–129. DOI: 10.1016/j.chom.2007.06.010.

7. Morita N., Umemoto E., Fujita S., et al. GPR31-dependent dendrite protrusion of intestinal CX3CR1+ cells by bacterial metabolites. Nature. 2019;566:110–114. DOI: 10.1038/s41586-019-0884-1.

8. Rakoff-Nahoum S., Foster K.R., Comstock L.E. The evolution of cooperation within the gut microbiota. Nature. 2016;533(7602):255–259. DOI: 10.1038/nature17626.

9. Tomasello G., Mazzola M., Leone A., Sinagra E., Zummo G., Farina F., Damiani P., Cappello F., Gerges Geagea A., Jurjus A., BouAssi T., Messina M., Carini F. Nutrition, oxidative stress and intestinal dysbiosis: Influence of diet on gut microbiota in inflammatory bowel diseases. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc. Czech. Repub. 2016;160(4):461–466. DOI: 10.5507/bp.2016.052.

10. Walker A.W., Sanderson J.D., Churcher C., Parkes G.C., Hudspith B.N., Rayment N., Brostoff J., Parkhill J., Dougan G., Petrovska L. High-throughput clone library analysis of the mucosa-associated microbiota reveals dysbiosis and differences between inflamed and non-inflamed regions of the intestine in inflammatory bowel disease. BMC Microbiol. 2011;11:7. DOI: 10.1186/1471-2180-11-7.


Review

For citations:


Belova, N.V., Ostrenko K.S., Koloskova E.M. Effect of Choline Bitartrate on the Gut Microbiota of Piglets. Journal Biomed. 2025;21(4):44-48. (In Russ.) https://doi.org/10.33647/2074-5982-21-4-44-48

Views: 18


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2074-5982 (Print)
ISSN 2713-0428 (Online)