Preview

Journal Biomed

Advanced search

Mathematical modeling of vancomomycin pharmacokinetics parameters: opportunities and comparison with the results of therapeutic drug monitoring

Abstract

The purpose of a prospective observational study is to compare the pharmacokinetic parameters of vancomycin, obtained by therapeutic drug monitoring and mathematical modeling of surgical patients with renal dysfunction. A total of 61 patients (men - 47 people, women - 14) aged 60.59 ± 12.23 years were examined. The study participants were divided into two groups: the first with acute renal damage (66.6%), the second without it (33.4%). Equilibrium residual and peak concentrations of vancomycin were determined by high performance liquid chromatography. It was established that the values of the equilibrium residual concentrations of vancomycin after 48 hours from the start of therapy were significantly lower than the values obtained by mathematical modeling in the group of patients with acute renal damage (p=0.004). The values of the equilibrium residual concentrations at the time of completion of vancomycin therapy in groups with acute renal damage (p=0.092) and without it (p=0.087) do not differ significantly. The actual values of the area under the pharmacokinetic curve for 24 hours were significantly higher than the calculated level in the groups with acute renal damage (p=0.011) and close to reliable in the group without it (p=0.056). When equilibrium residual concentrations of 10-15 µg/ml are reached, the ratio of the area under the pharmacokinetic curve for 24 hours to the minimum inhibitory concentration reaches target values (more than 400 µg*h/ml) after 48 hours from the start of therapy and at the time of completion of antibiotic therapy. Differences in the actual values of pharmacokinetic parameters and those obtained by the method of mathematical modeling indicate the need for mandatory use of therapeutic drug monitoring in patients with renal dysfunction.

About the Authors

G. V. Ramenskaya
ФГАОУ ВО Первый МГМУ им. И.М. Сеченова Минздрава России (Сеченовский Университет)
Russian Federation


I. E. Shokhin
ФГАОУ ВО Первый МГМУ им. И.М. Сеченова Минздрава России (Сеченовский Университет)
Russian Federation


M. V. Lukina
ФГАОУ ВО Первый МГМУ им. И.М. Сеченова Минздрава России (Сеченовский Университет)
Russian Federation


T. B. Andrushchyshina
ФГАОУ ВО Первый МГМУ им. И.М. Сеченова Минздрава России (Сеченовский Университет)
Russian Federation


M. A. Chukina
ФГАОУ ВО Первый МГМУ им. И.М. Сеченова Минздрава России (Сеченовский Университет)
Russian Federation


I. L. Tsarev
ФГАОУ ВО Первый МГМУ им. И.М. Сеченова Минздрава России (Сеченовский Университет)
Russian Federation


O. A. Vartanova
ФГАОУ ВО Первый МГМУ им. И.М. Сеченова Минздрава России (Сеченовский Университет)
Russian Federation


T. E. Morozova
ФГАОУ ВО Первый МГМУ им. И.М. Сеченова Минздрава России (Сеченовский Университет)
Russian Federation


References

1. Бондарева И.Б. Программное обеспечение для анализа данных ФК/ФД исследований // Клиническая фармакокинетика. 2005. № 2(3). С. 9-13.

2. Bauer L.A. Chapter 5. Vancomycin. In: Bauer L.A., ed. Applied Clinical Pharmacokinetics, 2nd. New-York: McGraw-Hill. 2008.

3. Bel К.А., Bourguignon L., Marcos M., Ducher M., Goutelle S. Is trough concentration of vancomycin predictive o fthe area under the curve? A clinical study in elderly patients // Ther. Drug Monit, 2017; 39(1): 83-7.

4. Burton M.E., Gentle D.L., Vasko M.R. Evaluation of a Bayesian method for predicting vancomycin dosing // DICP, 1989; 4: 294-300.

5. Core T. A language and environment for statistical computing. Foundation for Statistical Computing, Vienna, Austria. 2017.

6. DeRyke C.A., Alexander D.P. Optimizing Vancomycin Dosing Through Pharmacodynamic Assessment Targeting Area Under the Concentration-Time Curve/Minimum Inhibitory Concentration // Hospital Pharmacy, 44(9): 751-765.

7. Eyob D.A., Herald M., Koura F. Pharmacokinetics of Vancomycin in Extremely Obese Patients with Suspected or Confirmed Staphylococcus aureus Infections // PHARMACOTHERAPY. 2015. V. 35, No. 2. Pp. 127-139.

8. KDIGO: Clinical Practice Guideline for Acute Kidney Injury. Kidney International. 2012. V. 2. Issue 1.

9. Lake K.D., Peterson C.D. A simplified dosing method for initiating vancomycin therapy // Pharmacotherapy: J. of Human Pharmacology and Drug Therapy. 1985. V. 5, No. 6. Pp. 340-344.

10. del Mar Fernández de Gatta Garcia M., Revilla N., Calvo M.-V., Domínguez-Gil A., Navarro A.S. Pharmacokinetic / pharmacodynamic analysis of vancomycin in ICU patients // Intensive Care Med., 2007; 33: 279-285.

11. Matzke G.R., McGory R.W., Halstenson C.E., Keane W.F. Pharmacokinetics of vancomycin in patients with various degrees of renal function // Antimicrob Agents Chemother. 1984; 25(4): 433-437.

12. Moise-Broder P.A., Forrest A., Birmingham M.C., et al. Pharmacodynamics of vancomycin and other antimicrobials in patients with Staphylococcus aureus lower respiratory tract infections // Clin. Pharmacokinet., 2004; 43: 925-942.

13. Murphy J.E., Gillespie D.E., Bateman C.V. Predictability of vancomycin trough concentrations using seven approaches for estimating pharmacokinetic parameters // Am. J. Health Syst. Pharm., 2006; 63: 2365-70.

14. Neely M.N., Youn G., Jones B., Jelliffe R.W., Drusano G.L., Rodvold K.A., et al. Are vancomycin trough concentrations adequate for optimal dosing? // Antimicrob Agents Chemother., 2014; 58(1): 309-316.

15. Pai M.P., Neely M., Rodvold K.A., Lodise T.P. Innovative approaches to optimizing the delivery of vancomycin in individual patients // Advanced drug delivery reviews, 2014; 77: 50-57.

16. Patel N., Pai M.P., Rodvold K.A., Lomaestro В., Drusano G.L., Lodise T.P. Vancomycin: we can't get there from here // Clinical infectious diseases, 2011; 52(8): 969-974.

17. Prybylski J.P. Vancomycin trough concentration as a predictor of clinical outcomes in patients with Staphylococcus aureus bacteremia: a meta-analysis of observational studies // Pharmacotherapy: J. of Human Pharmacology and Drug Therapy, 2015; 35(10): 889-898.

18. Rybak M., et al. Therapeutic monitoring of vancomycin in adult patients: a consensus review of the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, and the Society of Infectious Diseases Pharmacists // Am. J. of Health-System Pharmacy, 2009; 66(1): 82-98.

19. Bondareva I.B. Programmnoe obespechenie dlya analiza dannyh FK/FD issledovanij [Software for data analysis of PK/PD studies]. Klinicheskaya farmakokinetika [Clinical Pharmacokinetics]. 2005. No. 2(3). Pp. 9-13. (In Russian).

20. Bauer L.A. Chapter 5. Vancomycin. In: Bauer L.A., ed. Applied Clinical Pharmacokinetics, 2nd. New-York: McGraw-Hill. 2008.

21. Bel К.А., Bourguignon L., Marcos M., Ducher M., Goutelle S. Is trough concentration of vancomycin predictive o fthe area under the curve? A clinical study in elderly patients. Ther. Drug Monit, 2017; 39(1): 83-7.

22. Burton M.E., Gentle D.L., Vasko M.R. Evaluation of a Bayesian method for predicting vancomycin dosing. DICP, 1989; 4: 294-300.

23. Core T. A language and environment for statistical computing. Foundation for Statistical Computing, Vienna, Austria. 2017.

24. DeRyke C.A., Alexander D.P. Optimizing Vancomycin Dosing Through Pharmacodynamic Assessment Targeting Area Under the Concentration-Time Curve/Minimum Inhibitory Concentration. Hospital Pharmacy, 44(9): 751-765.

25. Eyob D.A., Herald M., Koura F. Pharmacokinetics of Vancomycin in Extremely Obese Patients with Suspected or Confirmed Staphylococcus aureus Infections. PHARMACOTHERAPY. 2015. V. 35, No. 2. Pp. 127-139.

26. KDIGO: Clinical Practice Guideline for Acute Kidney Injury. Kidney International. 2012. V. 2. Issue 1.

27. Lake K.D., Peterson C.D. A simplified dosing method for initiating vancomycin therapy. Pharmacotherapy: J. of Human Pharmacology and Drug Therapy. 1985. V. 5, No. 6. Pp. 340-344.

28. del Mar Fernández de Gatta Garcia M., Revilla N., Calvo M.-V., Domínguez-Gil A., Navarro A.S. Pharmacokinetic / pharmacodynamic analysis of vancomycin in ICU patients. Intensive Care Med., 2007; 33: 279-285.

29. Matzke G.R., McGory R.W., Halstenson C.E., Keane W.F. Pharmacokinetics of vancomycin in patients with various degrees of renal function. Antimicrob Agents Chemother. 1984; 25(4): 433-437.

30. Moise-Broder P.A., Forrest A., Birmingham M.C., et al. Pharmacodynamics of vancomycin and other antimicrobials in patients with Staphylococcus aureus lower respiratory tract infections. Clin. Pharmacokinet., 2004; 43: 925-942.

31. Murphy J.E., Gillespie D.E., Bateman C.V. Predictability of vancomycin trough concentrations using seven approaches for estimating pharmacokinetic parameters. Am. J. Health Syst. Pharm., 2006; 63: 2365-70.

32. Neely M.N., Youn G., Jones B., Jelliffe R.W., Drusano G.L., Rodvold K.A., et al. Are vancomycin trough concentrations adequate for optimal dosing? Antimicrob Agents Chemother., 2014; 58(1): 309-316.

33. Pai M.P., Neely M., Rodvold K.A., Lodise T.P. Innovative approaches to optimizing the delivery of vancomycin in individual patients. Advanced drug delivery reviews, 2014; 77: 50-57.

34. Patel N., Pai M.P., Rodvold K.A., Lomaestro В., Drusano G.L., Lodise T.P. Vancomycin: we can't get there from here. Clinical infectious diseases, 2011; 52(8): 969-974.

35. Prybylski J.P. Vancomycin trough concentration as a predictor of clinical outcomes in patients with Staphylococcus aureus bacteremia: a meta-analysis of observational studies. Pharmacotherapy: J. of Human Pharmacology and Drug Therapy, 2015; 35(10): 889-898.

36. Rybak M., et al. Therapeutic monitoring of vancomycin in adult patients: a consensus review of the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, and the Society of Infectious Diseases Pharmacists. Am. J. of Health-System Pharmacy, 2009; 66(1): 82-98.


Review

For citations:


Ramenskaya G.V., Shokhin I.E., Lukina M.V., Andrushchyshina T.B., Chukina M.A., Tsarev I.L., Vartanova O.A., Morozova T.E. Mathematical modeling of vancomomycin pharmacokinetics parameters: opportunities and comparison with the results of therapeutic drug monitoring. Journal Biomed. 2018;(4):51-62. (In Russ.)

Views: 262


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2074-5982 (Print)
ISSN 2713-0428 (Online)