Preview

Journal Biomed

Advanced search

Between Cognitivity and Neuropathies: Neuroimaging of the Effects of GABAergic Modulation of the Hippocampus and Prefrontal Neocortexis by Normalized Brain Electrograms

https://doi.org/10.33647/2074-5982-16-2-12-38

Abstract

A comparative analysis conducted across the entire range of normalized brain electrograms (NBE) revealed the selective effect of gamma-aminobutyric acid (GABA) derivatives in the hippocampus and frontal pole of the neocortex. A signifi cant similarity in the level of activation of these brain regions was revealed under the action of glutamine and, particularly, gabapentin. For gabapentin, the activity of the hippocampus is more comparable to that in the anterior suprasilvius gyrus. Under the action of pregabalin, NBE revealed a similarity between the hippocampus and the proreal gyrus, with a more pronounced activity being registered in the range of 1–10 Hz. The NBE activity in the anterior suprasilvian gyrus was lower than that in the proreal gyrus. Under the action of phenibut, the activity of the hippocampus was higher than that of the prefrontal cortex across the 30–40 Hz range; however, under the action of aminalon, this phenomenon was observed for all the analysed rhythms. The predominant effect of GABA derivatives on the high-frequency components of the γ-rhythms of NBE was established. The most pronounced activation effects in γ-rhythms were characteristic of aminalon, while the most pronounced effects of deprimation were characteristic of gabapentin. The overall picture of the γ-rhythm activity was similar under the administration of glutamine, pregabalin and phenibut, as well as being generally close to the background level. The effects of glutamine and pregabalin in the analysis of NBE showed similarities across the frequency ranges of about 40–44 Hz and 60–64 Hz. The effects of pregabalin, gabapentin, and phenibut were similar across the frequency range of about 52–62 Hz. In the high-frequency γ-rhythms, gabapentin, pregabalin and phenibut were characterized by peaks in the range of 44–50 Hz, 40–55 Hz and 35–40 Hz, respectively. Aminalon showed no similarities with other GABA derivatives and was characterized by an extremum in the γ-rhythm at a frequency of about 41 Hz. Using instrumental methods for assessing cognitive behaviour and the mathematical analysis of NBE, the signifi cant role of the intercalary neurons (basket cells) of the hippocampus and prefrontal cortex in the implementation of glutamate and GABA effects was established. It was confi rmed that GABA derivatives function as the main mediator of intercalary neurons in the systemic activity of the brain. The maximum values of NBE under the action of all the GABA derivatives under study coincide with the pharmacodynamic and pharmacokinetic parameters of these drugs. A comparative analysis of the effects of glutamate and all the studied GABA derivatives revealed the greatest similarity of the former with phenibut. Aminalon, being a synthetic analogue of GABA, differs from all other drugs under study by the highest activation of the general level of NBE. The effects of neuroimaging refl ect the properties and nature of the effect of drugs on cognitive functions, intra-centre relations of the brain and higher nervous activity. New mechanisms of the systemic action of GABA derivatives were studied. The obtained results confi rm that the normalized electrographic activity of various parts of the brain can be used to identify certain physiological and pathogenetic mechanisms of the most important functions of the brain and their disorders. Activation of the GABAergic stress-limiting system can be considered as one of the promising methods for the selection of approaches to preventing and treating diseases associated with neurogenic and psychogenic factors.

About the Authors

N. N. Karkischenko
Scientifi c Center of Biomedical Technologies of the Federal Medical and Biological Agency of Russia
Russian Federation

Nikolay N. Karkischenko, Dr. Sci. (Med.), Prof., Academician of the Russian Academy of Rocket and Artillery Sciences, Corresponding Member of the Russian Academy of Sciences

143442, Moscow region, Krasnogorsk district, Svetlye gory village, building 1



V. N. Karkischenko
Scientifi c Center of Biomedical Technologies of the Federal Medical and Biological Agency of Russia
Russian Federation

Vladislav N. Karkischenko, Dr. Sci. (Med.), Prof.

143442, Moscow region, Krasnogorsk district, Svetlye gory village, building 1



Yu. V. Fokin
Scientifi c Center of Biomedical Technologies of the Federal Medical and Biological Agency of Russia
Russian Federation

Yuriy V. Fokin, Cand. Sci. (Biol.)

143442, Moscow region, Krasnogorsk district, Svetlye gory village, building 1



L. A. Taboyakova
Scientifi c Center of Biomedical Technologies of the Federal Medical and Biological Agency of Russia
Russian Federation

Lidiya A. Taboyakova

143442, Moscow region, Krasnogorsk district, Svetlye gory village, building 1



O. V. Alimkina
Scientifi c Center of Biomedical Technologies of the Federal Medical and Biological Agency of Russia
Russian Federation

Oksana V. Alimkina

143442, Moscow region, Krasnogorsk district, Svetlye gory village, building 1



M. M. Borisova
Scientifi c Center of Biomedical Technologies of the Federal Medical and Biological Agency of Russia
Russian Federation

Mariya M. Borisova

143442, Moscow region, Krasnogorsk district, Svetlye gory village, building 1



References

1. Bayaliyeva A.Zh., Khusainova I.I., Gabitov N.A., Filippova N.Ye. Vozmozhnost’ uprezhdayushchey analgezii gabapentinom pri laparoskopicheskikh operatsiyakh v onkoginekologii [The possibility of proactive analgesia with gabapentin during laparoscopic surgery in gynecological oncology]. Kazan Medical Journal. 2016;97(6):909–912. (In Russian).

2. Bezsheyko V.G. Lecheniye patsiyentov s khroni cheskoy neyropaticheskoy bol’yu v obshchey meditsinskoy praktike [Treatment of patients with chronic neuropathic pain in general medical practice]. Ukrainian Medical Journal. 2016;6(116):XI/XII. (In Russian).

3. Zorina I.I., Poletayeva Z.A. Elementarnoye myshleniye zhivotnykh [Elementary thinking of animals]. 1st ed. Moscow: Aspect-Press Publ., 2002. 319 p. (In Russian).

4. Karkischenko N.N. Psihounitropizm lekarstvennyh sredstv [Psychunitropism of medicines]. Moscow: Medicina Publ., 1993. 208 p. (In Russian).

5. Karkischenko N.N. Farmakologiya sistemnoj deyatel’nosti mozga [Pharmacology of systemic activity of the brain]. Rostov: Rostizdat Publ., 1975. 152 p. (In Russian).

6. Karkischenko N.N., Karkischenko V.N., Fokin Yu.V. O mekhanizmakh farmakologicheskoy modulyatsii obsessivno-kompul’sivnykh i kognitivnykh rasstroystv koshek, raspoznavayemykh metodom normirovaniya BPF-preobrazuyemykh funktsiy elektrogramm frontal’noy kory golovnogo mozga i gippokampa [Mechanisms of the Pharmacological Modulation of Obsessive-Compulsive and Cognitive Disorders in Cats Recognized by the Method of Normalizing FFT-Convertible Functions of Electrograms of the Frontal Cortex and Hippocampus]. Journal Biomed. 2020;16(1):12–27. (In Russian). DOI: 10.33647/2074-5982-16-1-12-27.

7. Karkischenko N.N., Karkis chenko V.N., Fokin Yu.V., Kharitonov S.Yu. Nejrovizualizaciya effektov psihoaktivnyh sredstv posredstvom normalizacii elektrogramm golovnogo mozga [Neuroimaging of the Effects of Psychoactive Substances by Means of Normalization of Brain Electrograms]. Journal Biomed. 2019;15(1):12–34. (In Russian). DOI: 10.33647/2074-5982-15-1-12-34.

8. Karkischenko N.N., Fokin Yu.V., Karkischenko V.N., Sakharov D.S., Alimkina O.V. Rol’ neyromediatornykh sistem mozga v generatsii ul’trazvukovoy vokalizatsii i yeyo korrelyatsii s povedeniyem zhivotnykh [The role of brain neurotransmitter systems in the generation of ultrasonic vocalization and its correlation with animal behavior]. Journal Biomed. 2011;4:8–18. (In Russian).

9. Karkischenko N.N., Fokin Yu.V., Karkischenko V.N., Taboyakova L.A., Mokrousov M.I., Alimkina O.V. Konvergentnaya validaciya intracentral’nyh otnoshenij golovnogo mozga zhivotnyh [Convergent validation of intracentral relationships of the brain of animals]. Journal Biomed. 2017;3:16–39. (In Russian).

10. Karkischenko N.N., Fokin Yu.V., Karkischenko V.N., Taboyakova L.A., Kharitonov S.Yu., Alimkina O.V. Novye podhody k ocenke intracentral’nyh otnoshenij po pokazatelyam operantnogo povedeniya i elektrogramm mozga koshek [New approaches to the assessment of intracentral relations in terms of operant beha vior and electrograms of the cats brain]. Journal Biomed. 2018;4:4–17. (In Russian).

11. Kolik L.G., Kozhechkin S.N. Vliyaniye gabapentina i etanola na elektricheskuyu aktivnost’ neyronov kory golovnogo mozga krys Wistar [The effect of gabapentin and ethanol on the electrical activity of neurons in the cerebral cortex Wistar rats]. Pharmacokinetics and Pharmacodynamics. 2018;2:22–27. (In Russian). DOI: 10.24411/2587-7836-2018-10011.

12. Mitrokhin K.V., Baranishin A.A. Klassifi katsiya i kratkoye opisaniye lekarstvennykh preparatov — analogov proizvodnykh gamma-aminomaslyanoy kisloty i toksicheskikh veshchestv, vliyayushchikh na GAMK-yergicheskuyu svyaz’ [Classifi cation and brief description of drugs — analogues of derivatives of gamma-aminobutyric acid and toxic substances that affect the GABAergic relationship]. Anesthesiology and Intensive Care. 2018;6:22–30. (In Russian). DOI: 10.17116/anaesthesiology201806122.

13. Perfi lova V.N., Tyurenkov I.N. Rol’ GAMK-yergicheskoy sistemy v ogranichenii stressornogo povrezhdeniya miokarda [The role of the GABAergic system in limiting stress damage to the myocardium]. Clinical Pharmacological Drug Therapy Reviews. 2005;4(1):21–26. (In Russian).

14. Rukovodstvo po laboratornym zhivotnym i al’ternativnym modelyam v biomedicinskih issledovaniyah [Manual on laboratory animals and alternative models in biomedical research]. Ed. by N.N. Karkischenko, et al. Moscow: Profi l’-2S Publ., 2010. 358 p. (In Russian).

15. Saul’skaya N.B., Vinogradova Ye.V. Vliyaniye aktivatsii i blokady GAMKA-retseptorov na aktivnost’ nitrergicheskoy sistemy prilezhashchego yadra (n. accumbens) [The effect of activation and blockade of GABAA receptors on the activity of the nitrergic system of the nucleus accumbens (n. accumbens)]. Russian Physiological Sechenov Journal. 2014;100(7):791– 801. (In Russian).

16. Sem’yanov A.V. Diffuznaya vnesinapticheskaya neyroperedacha posredstvom glutamata i GAMK [Diffuse extrasynaptic neurotransmission via glutamate and GABA]. Institute of Neurology, London, UK, 2004. (In Russian).

17. Umryukhin A.Ye. Neyromediatornyye gippokampal’nyye mekhanizmy stressornogo povedeniya i reaktsiy izbeganiya [Neurotransmitter hippocampal mechanisms of stress behavior and avoidance reactions]. Bulletin of New Medical Technologies. 2013;1. (In Russian).

18. Fedorova O.A. Neyropaticheskaya bol’. Klinicheskaya effektivnost’ gabapentina v kachestve preparata 1-y linii [Neuropathic pain. Clinical effi cacy of gabapentin as a fi rst-line drug]. Ukrainian Medical Journal. 2013;5(97):IX/X. (In Russian).

19. Fokin Yu.V. Sravnitel’naya ocenka vliyaniya psihoaktivnyh sredstv na gippokampal’nye teta- i gamma-ritmy [Comparative evaluation of the infl uence of psychoactive medicines on hippocampal teta and gamma rhythms]. Journal Biomed. 2019;15(3):23–32. (In Russian). DOI: 10.33647/2074-5982-15-3-23-32.

20. Khelimskiy A.M., Butenko T.A., Drozdova I.P., Shilko I.B. Opyt primeneniya Tebantina® (gabapentina) v lechenii khronicheskikh diskogennykh bolevykh sindromov sheynogo i poyasnichnogo osteokhondroza. [Experience with Tebantin® (gabapentin) in the treatment of chronic discogenic pain syndromes of cervical and lumbar osteochondrosis]. Far Eastern Medical Journal. 2007;3:48– 50. (In Russian).

21. Shabanov P.D., Vislobokov P.D., Shilov G.N., Bulay P.M., Lugovskiy A.P. Izmeneniye vnutrikletochnykh potentsialov i ionnykh tokov neyronov mollyuskov i aktivnosti Cl-kanalov pod vliyaniyem nekotorykh tormoznykh aminokislot i novykh litiysoderzhashchikh soyedineniy na ikh osnove [Changes in intracellular potentials and ionic currents of mollusk neurons and Cl-channel activity under the infl uence of some inhibitory amino acids and new lithium-containing compounds based on them]. Clinical Pharmacology and Drug Therapy Reviews. 2015;3(3):39–47. (In Russian).

22. Shilov G.N., Bubel’ O.N., Shabanov P.D. Noviy podkhod k ponimaniyu struktury, funktsii i klassifi katsii GAMK-benzodiazepinovogo retseptornogo kompleksa, molekulyarnoy misheni dlya razrabotki novykh antikonvul’santov na baze tormoznykh aminokislot [A new approach to understanding the structure, function and classifi cation of the GABA-benzodiazepine receptor complex, a molecular target for the development of new anticonvulsants based on inhibitory amino acids]. Clinical Pharmacology and Drug Therapy Reviews. 2016;14 (3):34–45. (In Russian).

23. Shcherbakova T.N., Ozerova P.A. Izucheniye protivootechnogo deystviya deystviya fenibuta i novykh proizvodnykh GAMK [The study of the decongestant action of phenibut and new derivatives of GABA]. Pharmacy and Pharmacology. 2015;3(10):72–74. (In Russian).

24. Attal N., Cruccu G., Baron R., et al. EFNS guidelines on pharmacological treatment of neuropathic pain. Eur. J. Neurol. 2010;17(9):1113–e88.

25. Banerjee M., Pal S., Bhattacharya B., et al. A comparative study of effi cacy and safety of gabapentin versus amitriptyline as coanalgesics in patients receiving opioid analgesics for neuropathic pain in malignancy. Indian J. Pharmacol. 2013;45(4):334–338.

26. Baron R., Freynhagen R., Tolle T.R., et al. The effi cacy and safety of pregabalin in the treatment of neuropathic pain associated with chronic lumbosacral radiculopathy. Pain. 2010;150:420–427.

27. Baron R., Tolle T.R., Gockel U., et al. A cross-sectional cohort survey in 2100 patients with painful diabetic neuropathy and postherpetic neuralgia: differences in demographic data and sensory symptoms. Pain. 2009;146:34–40.

28. Bouron A. Modulation of spontaneous quantal release of neurotransmitters in the hippocampus. Prog. Neurobiol. 2001;63(6):613–635.

29. Bragin A., Jandó G., Nádasdy Z., Hetke J., Wise K., Buzsáki G. Gamma (40–100 Hz) oscillation in the hippocampus of the behaving rat. J. Neurosci. 1995;15(1, Pt 1):47–60.

30. Breivik H., Collet B., Vantafridda V., et al. Survey of chronic pain in Europe: Prevalence, impact on daily life, and treatment. Eur. J. Pain. 2006;10:287–333.

31. Cherubini E., Conti F. Generating diversity at GABAergic synapses. Trends Neurosci. 2001;24(3):155–162.

32. Ciraulo D.A., Sands B.F., Shader R.I. Critical review of liability for benzodiazepine abuse among alcoholics. Am. J. Psychiatry. 1988;145(12):1501–1506. DOI: 10.1176/ajp.145.12.1501.

33. Coderre T.J., Kumar N., Lefebvre C.D., Yu J.S. Evidence that gabapentin reduces neuropathic pain by inhibiting the spinal release of glutamate. J. Neurochem. 2005;94(4):1131–1139.

34. Cooper T.E., Derry S., Wiffen P.J., Moore R.A. Gabapentin for fi bromyalgia pain in adults. Cochrane Database of Systematic Reviews. 2017;1:CD012188.

35. Foldvary Schaefer N., De Leon Sanchez I., Karafa M., et al. Gabapentin increases slow wave sleep in normal adults. Epilepsia. 2002;43:1493–1497.

36. Fornasari D. Pharmacotherapy for Neuropathic Pain: A Review. Pain Ther. 2017;6(1):25–33. DOI: 10.1007/s40122-017-0091-4.

37. Frucht S.J., Houghton W.C., Bordelon Y., Greene P.E., Louis E.D. A single-blind, open-label trial of sodium oxybate for myoclonus and essential tremor. Neurology. 2012;65(12):1967–1969.

38. Furieri F.A., Nakamura-Palacios E.M. Gabapentin reduces alcohol consumption and craving: a randomized, double-blind, placebo-controlled trial. J. Clin. Psychiatry. 2007;68(11):1691–1700.

39. Gordh T.E., Stubhaug A., Jensen T.S., et al. Gabapentin in traumatic nerveinjury pain: a randomized, doubleblind, placebocontrolled, crossover, multicenter study. Pain. 2008;138:255–266.

40. Gray P. Pregabalin in the management of central neuropathic pain. Expert Opin. Pharmacother. 2017;8(17):3035–3041.

41. Haanpää M., Attal N., Backonja M., et al. NeuPSIG guidelines on neuropathic pain assessment. Pain. 2011;152(1):14–27.

42. Hall G.C., Morant S.V., Carrol D., et al. An observational descriptive study of the epidemiology and treatment of neuropathic pain in a UK general population. BMC Family Practice. 2013;14:28.

43. Happe S., Klosch G., Saletu B., et al. Treatment of idio pathic restless legs syndrome (RLS) with gabapentin. Neurology. 2001;57:1717–1719.

44. Hertz L., Peng L., Lai J.C. Functional studies in cultured astrocytes. Methods. 1998;16(3):293–310.

45. https://tyubik.net/tabletki/733-chem-mozhno-zamenit-pregabalin-bez-receptov.html

46. https://zen.yandex.ru/media/id/5a5348c34bf161504f94b889/pregabalin-lirika-5a5610519d5cb33b8ecdd652

47. Isaacson J.S. Spillover in the spotlight. Curr. Biol. 2000;10(13):R475–R477.

48. Isaacson J.S., Solis J.M., Nicoll R.A. Local and diffuse synaptic actions of GABA in the hippocampus. Neuron. 1993;10(2):165–175.

49. Ji J., Maren S. Hippocampal involvement in contextual modulation of fear extinction. Hippocampus. 2007;17(9):749–758.

50. Kann O. The interneuron energy hypothesis: Implications for brain disease. Neurobiol. Dis. 2016;90:75–85. DOI: 10.1016/j.nbd.2015.08.005.

51. Kann O., Huchzermeyer C., Kovács R., Wirtz S., Schuelke M. Gamma oscillations in the hippocampus require high complex I gene expression and strong functional performance of mitochondria. Brain. 2011;134(2):345–358. DOI: 10.1093/brain/awq333.

52. Karila L., Reynaud M. GHB and synthetic cathinones: clinical effects and potential consequences. Drug Testing and Analysis. 2011;3(9):552–559.

53. Khakh B.S., Henderson G. Modulation of fast synaptic transmission by presynaptic ligand-gated cation channels. J. Auton. Nerv. Syst. 2000;81(1–3):110–121.

54. Korpi E.R., Grunder G., Luddens H. Drug interactions at GABAA receptors. Progress in Neurobiology. 2002;67:113–159.

55. Kullmann D.M. Spillover and synaptic cross talk mediated by glutamate and GABA in the mammalian brain. Prog. Brain Res. 2000;125:339–351.

56. Lalli G., Gschmeissner S., Schiavo G. Myosin Va and microtubule-based motors are required for fast axonal retrograde transport of tetanus toxin in motor neurons. J. Cell Science. 2003;116(22):4639–4350.

57. Lanneau C., Green A., Hirst W.D., et al. Gabapentin is not a GABAB receptor agonist. Neuropharmacology. 2001;41(8):965–975.

58. Leung J.G., Hall-Flavin D., Nelson S., et al. The role of gabapentin in the management of alcohol withdrawal and dependence. Ann. Pharmacother. 2015;49(8):897– 906. DOI: 10.1177/1060028015585849.

59. Lo H.S., Yang C.M., et al. Терапевтическая эффективность габапентина при лечении первичной инсомнии. Нейроnews. 2010;3(22). https://neuronews.com.ua/ru/issue-article-314/Terapevticheskayaeffektivnost-gabapentina-pri-lechenii-pervichnoyinsomnii#gsc.tab=0

60. Malcolm R., Myrick H., Roberts J., et al. The effects of carbamazepine and lorazepam on single versus multiple previous alcohol withdrawals in an outpatient randomized trial. J. Gen. Intern. Med. 2002;17(5):349–355.

61. Manjushree N., Chakraborty A., Shashidhar K., Marayanaswamy S. A review of the drug pregabalin. Int. J. Basic Clin. Pharmacol. 2015;4(4). DOI: 10.18203/2319-2003.ijbcp20150359.

62. Mason B.J., Quello S., Goodell V., et al. Gabapentin treatment for alcohol dependence: a randomized clinical trial. JAMA Intern Med. 2014;174(1):70–77. DOI: 10.1001/jamainternmed.2013.11950.

63. Mason B.J., Quello S., Shadan F. Gabapentin for the treatment of alcohol use disorder. Expert Opin. Investig. Drugs. 2018;27(1):113–124. DOI: 10.1080/13543784.2018.1417383.

64. Matveeva E.D., Podrugina T.A., Tishkovskaya E.V., Tomilova L.G., Zefi rov N.S. Novel Catalytic Three Component Synthesis (Kabachnick-Fields Reaction) of α-Aminophosphonates from Ketones. Synlett. 2003;15:2321–2324.

65. Myers K.M., Davis M. Behavioral and neural analysis of extinction. Neuron. 2002;36(4):567–584.

66. Nilsson L.-G., Markowitsch H.J. Cognitive Neuroscience of Memory. Seattle: Hogrefe & Huber Publ., 1999. 57 p.

67. Polunina A.G., Davydov D.M. EEG Correlates of Wechsler Adult Intelligence Scale. Int. J. Neurosc. 2006;116(10):1231–1248.

68. Poulos C.X., Zack M. Low-dose diazepam primes motivation for alcohol and alcohol-related semantic networks in problem drinkers. Behav. Pharmacol. 2004;15(7):503–512.

69. Rao M.L., Clarenbach P., Vahlensieck M., et al. Gabapentin augments whole blood serotonin in healthy young men. J. Neural. Transm. 1988;73:129–134.

70. Roberto M., Gilpin N.W., O’Dell L.E., et al. Cellular and behavioral interactions of gabapentin with alcohol dependence. J. Neurosci. 2008;28(22):5762–5771. DOI: 10.1523/JNEUROSCI.0575-08.2008.

71. Rudolph U., Crestani F., Benke D., Brunig I. Benzodiazepine actions mediated by specifi c γ-aminobutyric acid (A) receptor subtypes. Nature. 1999;401:796–800.

72. Saldana M.T., Navarro A., Perez C., et al. Patientreported-outcomes in subjects with painful lumbar or cervical radiculopathy treated with pregabalin: evidence from medical practice in primary care settings. Rheumatol. Int. 2010;30(8):1005–1015.

73. Satija P., Ondo W.G. Restless legs syndrome: pathophysiology, diagnosis and treatment. CNS Drugs. 2008;22:497–518.

74. Scanziani M. GABA spillover activates postsynaptic GABA(B) receptors to control rhythmic hippocampal activity. Neuron. 2000;25(3):673–681.

75. Sills G.J. The mechanisms of action of gabapentin and pregabalin. Curr. Opin. Pharmacol. 2006;6(1):108– 113.

76. Soltesz I., Nusser Z. Neurobiology. Background inhibition to the fore. Nature. 2001;409(6816):24–27.

77. Stefani A., Spadoni F., Giacomini P., et al. The effects of gabapentin on different ligand- and voltage-gated currents in isolated cortical neurons. Epilepsy Res. 2001;43(3):239–248.

78. Tort A.B., Kramer M.A., Thorn C., Gibson D.J., Kubota Y., Graybiel A.M., et al. Dynamic crossfrequency couplings of local fi eld potential oscillations in rat striatum and hippocampus during performance of a T-maze task. Proc. Natl Acad. Sci. USA. 2008;105(51):20517–20522. DOI: 10.1073/pnas.0810524105.

79. Toth C. Substitution of gabapentin therapy with pregabalin therapy in neuropathic pain due to peripheral neuropathy. Pain Med. 2010;11(3):456–465.

80. Treede R.D., Jensen T.S., Campbell J.N., et al. Neuropathic pain: redefi nition and a grading system for clinical and research purposes. Neurology. 2008;70(18):1630–1635.

81. Tzellos T.G., Papazisis G., Amaniti E., et al. Effi cacy of pregabalin and gabapentin for neuropathic pain in spinalcord injury: an evidencebased evaluation of the literature. Eur. J. Clin. Pharmacol. 2008;64:851–858.

82. Verma V., Singh J.A. Pregabalin in Neuropathic Pain: Evidences and possible mechanisms. Current Neuropharmacology. 2014;12(1):44–56. DOI: 10.2174/1570159X1201140117162802.

83. Vizi E.S. Different temperature dependence of carrier-mediated (cytoplasmic) and stimulus-evoked (exocytotic) release of transmitter: a simple method to separate the two types of release. Neurochem. Int. 1998;33(4):359–366.

84. Vizi E.S. Role of high-affi nity receptors and membrane transporters in nonsynaptic communication and drug action in the central nervous system. Pharmacol. Rev. 2000;52(1):63–89.

85. Vizi E.S., Kiss J.P. Neurochemistry and Pharmacology of the Major Hippocampal Transmitter Systems: Synaptic and Nonsynaptic Interactions. Hippocampus. 1998;8(6):566–607.

86. Wilton L.V., Shakir S. A postmarketing surveillance study of gabapentin as add-on therapy for 3100 patients in England. Epilepsia. 2002;43:983–992.

87. Woodward R.M., Polenzani L., Miledi R. Characterization of bicuculline/baclofen-insensitive (rho-like) gamma-aminobutyric acid receptors expressed in Xenopus oocytes. II. Pharmacology of gamma-aminobutyric ACIDA and gamma-aminobutyric ACIDB receptor agonists and antagonists. Molecular Pharmacology. 1993;43(4):609–625.


Review

For citations:


Karkischenko N.N., Karkischenko V.N., Fokin Yu.V., Taboyakova L.A., Alimkina O.V., Borisova M.M. Between Cognitivity and Neuropathies: Neuroimaging of the Effects of GABAergic Modulation of the Hippocampus and Prefrontal Neocortexis by Normalized Brain Electrograms. Journal Biomed. 2020;(2):12-38. (In Russ.) https://doi.org/10.33647/2074-5982-16-2-12-38

Views: 3070


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2074-5982 (Print)
ISSN 2713-0428 (Online)