Preview

БИОМЕДИЦИНА

Расширенный поиск

Иммуногенные липопептиды

Полный текст:

Аннотация

Липопротеины и липопептиды представляют собой амфифильные соединения. Липопептиды и их синтетические аналоги обладают биологической активностью in vivo : иммуномодулирующей, противоопухолевой, противовирусной, фунгицидной, бактерицидной и адъювантной. Синтетические липопептиды (как аналоги бактериальных) обладают адъювантными свойствами, могут вызывать продукцию цитокинов Th1- и Th2-профиля, усиливать функциональную активность CD8+ T-клеток памяти и CD4+ T-клеточную пролиферацию, что послужило причиной их использования при конструировании вакцинных препаратов.

Об авторах

А. Н. Белявцев
ФГБУ «Национальный исследовательский центр эпидемиологии и микробиологии имени почетного академика Н.Ф. Гамалеи» Минздрава России; ФГБОУ ВО «МИРЭА - Российский технологический университет»
Россия


Л. И. Николаева
ФГБУ «Национальный исследовательский центр эпидемиологии и микробиологии имени почетного академика Н.Ф. Гамалеи» Минздрава России
Россия


Н. С. Шастина
ФГБОУ ВО «МИРЭА - Российский технологический университет»
Россия


В. В. Куприянов
ФГУ «Федеральный исследовательский центр «Фундаментальные основы биотехнологии» РАН»
Россия


Список литературы

1. Антибиотики и противоинфекционный иммунитет // Под ред. Ющука Н.Д., Балмасовой И.Л. - М.: Практическая медицина. - 2012. - 232 с.

2. Дехнич А.В., Данилов А.И. Даптомицин // Клиническая микробиология, антимикробиология и химиотерапия. - 2010. - Т. 12. - № 4. - C. 295-313.

3. Зверев В.В., Бойченко М.Н. Медицинская микробиология, вирусология и иммунология. - М: ГЭОТАР-Медиа. - 2010. - Т. 2. - 447 с.

4. Куприянов В.В., Николаева Л.И., Зыкова А.А., Махновский П.И., Котляров Р.Ю., Равин Н.А. Иммунологические свойства рекомбинантных мозаичных белков на основе антигенов NS4A и NS4В вируса гепатита С // Вопросы вирусологии. - 2018. - № 3. - C. 32-45.

5. Мойса А.А., Колесанова Е.Ф. Синтетические пептидные вакцины // Биомед. химия. - 2011. - Т. 57(1). - C. 14-30.

6. Петров Р.В., Хаитов Р.М. Иммуногены и вакцины нового поколения. - М.: ГЭОТАР-Медиа. - 2011. - 608 с.

7. Ройт А., Бростофф Дж., Мейл Д. Вакцинация // В кн.: Иммунология. - М.: Мир. - 2000. - С. 361-374.

8. Andreansky S.S., Stambas J., Thomas P.J., Xie W., Webby R.J., Doherty P.C. Consequences of immunodominant epitope deletion for minor influenza virus-specific CD8+ T-cell responses // J. Virology. - 2005. - V. 79(7). - Pp. 4329-39.

9. BenMohamed L., Gras-Masse H., Tartar A., Daubersies P., Brahimi K., Bossus M., Thomas A., Druilhe P. Lipopeptide immunization without adjuvant induces potent and long-lasting B, T helper, and cytotoxic T lymphocyte responses against a malaria liver stage antigen in mice and chimpanzees // Eur. J. Immunol. - 1997. - V. 27(5). - Pp. 1242-1253.

10. Chen H.-W., Liu S.-J., Liu H.H., Kwok Y., Lin C.L., Lin L.H. Chen M.Y., Tsai J.P., Chang L.S., Chiu F.F., Leng C.H., Chen H.W. A novel technology for the production of a heterologous lipoprotein immunogen in high yield has implications for the field of vaccine design // Vaccine. - 2009. - V. 27. - Pp. 1400-09.

11. Chiang C.Y., Pan C.H., Chen M.Y., Hsieh C.H., Tsai J.P., Liu H.H., Liu S.J., Chong P., Leng C.H., Chen H.W. Immunogenicity of a novel tetravalent vaccine formulation with four recombinant lipidated dengue envelope protein domain IIIs in mice // Sci. Rep. - 2016. - V. 6. - P. 30648. doi: 10.1038/srep30648.

12. Chong H., Xue J., Xiong S., Cong Z., Ding X., Zhu Y., Liu Z., Chen T., Feng Y., He L., Guo Y., Wei Q., Zhou Y., Qin C., He Y. A lipopeptide HIV-1/2 fusion inhibitor with highly potent in vitro, ex vivo, and in vivo antiviral activity // J. Virol. - 2017. - V. 91(11). - pii: e00288-17. doi: 10.1128/JVI.00288-17.

13. Chong P., Huang J.H., Leng C.H., Liu S.J., Chen H.W. Recombinant lipoproteins as novel vaccines with intrinsic adjuvant // Adv. protein chem. struct. biol. - 2015. - V. 99. - Pp. 55-74. doi: 10.1016/bs.apcsb.2015.03.003.

14. Gential G.P., Ho N.I., Chiodo F., Meeuwenoord N., Ossendorp F., Overkleeft H.S., van der Marel G.A., Filippov D.V. Synthesis and evaluation of fluorescent Pam3Cys peptide conjugates // Bioorg. Med. Chem. Lett. - 2016. - V. 26(15). - Pp. 3641-45. doi: 10.1016/j.bmcl.

15. Ghielmetti M., Zwicker M., Ghielmetti T., Simon M.M., Villiger P.M., Padovan E. Synthetic bacterial lipopeptide analogs facilitate naive CD4+ T cell differentiation and enhance antigen-specific HLA-II-restricted responses // Eur. J. Immunol. - 2005. - V. 35(8). - Pp. 2434-42.

16. Infante-Duarte C., Kamradt T. Lipopeptides of Borrelia burgdorferi outer surface proteins induce Th1 phenotype development in alphabeta T-cell receptor transgenic mice // Infect. Immun. - 1997. - V. 65(10). - Pp. 4094-99.

17. Kaufmann A., Mühlradt P.F., Gemsa D., Sprenger H. Induction of cytokines and chemokines in human monocytes by Mycoplasma fermentans-derived lipoprotein MALP-2 // Infect. Immun. - 1999 - V. 67(12) - Pp. 6303-08.

18. Kiura K., Kataoka H., Yasuda M., Inoue N., Shibata K.-I. The diacylated lipopeptide FSL-1 induces TLR2-mediated Th2 responses // FEMS Immunol. & Medical Microbiol. - 2006. - V. 48(1). - Pp. 44-55.

19. Lex A., Wiesmüller K.H., Jung G., Bessler W.G. A synthetic analogue of Escherichia coli lipoprotein, tripalmitoyl pentapeptide, constitutes a potent immune adjuvant // J. Immunol. - 1986. - V. 137(8). - Pp. 2676-81.

20. Maget-Dana R., Ptak M., Peypoux F., Michel G. Pore-forming properties of iturin A, a lipopeptide antibiotic // Biochim. Biophys. Acta. - 1985. - V. 815(3). - Pp. 405-409.

21. Meena K.R., Kanwar S.S. Lipopeptides as the antifungal and antibacterial agents: applications in food safety and therapeutics // Biomed. Res. Int. - 2015. - V. 2015. - article ID 473050. - 9 p. doi: 10.1155/2015/473050.

22. Metzger J.W., Wiesmüller K.-H. Jung G. Synthesis of N-Fmoc protected derivatives of S-(2,3-dihydroxypropyl)-cysteine and their application in peptide synthesis // Int. J. Pep. Protein. Res. - 1991. - V. 38. - Pp. 545-554.

23. Mühlradt P.F., Kieß M., Meyer H., Süßmuth R., Jung G. Isolation, structure elucidation, and synthesis of a macrophage stimulatory lipopeptide from mycoplasma fermentans acting at picomolar concentration // J. Exp. Med. - 1997. - V. 185. - Pp. 1951-58.

24. Ozinsky A., Underhill D.M., Fontenot J.D., Hajjar A.M., Smith K.D., Wilson C.B., Schroeder L., Aderem A. The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between Toll-like receptors // Proc. Natl. Acad. Sci. USA. - 2000. - V. 97. - Pp. 13766-71.

25. Reitermann A., Metzger J., Wiesmüller K.H., Jung G., Bessler W.G. Lipopeptide derivatives of bacterial lipoprotein constitute potent immune adjuvants combined with or covalently coupled to antigen or hapten // Biol. Chem. Hoppe Seyler. - 1989. - V. 370(4). - Pp. 343-52.

26. Revets H., Pynaert G., Grooten J., De Baetselier P. Lipoprotein I, a TLR2/4 ligand modulates Th2-driven allergic immune responses // J. Immunol. - 2005. - V. 174(2). - Pp. 1097-1103.

27. Samayoa L., Diaz-Mitoma F., Azizi A. Characterization of a branched lipopeptide candidate vaccine against influenza A/Puerto Rico 8/34 which is recognized by human B and T-cell immune responses // Virlogy J. - 2011. - V. 8. - Pp. 309-329.

28. Stein U., Bergmann S., Scheffer G.L., Scheper R.J., Royer H.D., Schlag P.M., Walther W. YB-1 facilitates basal and 5-fluorouracil-inducible expression of the human major vault protein (MVP) gene // Oncogene. - 2005. - V. 24. - Pp. 3606-18.

29. van Bergenhenegouwen J., Kraneveld A.D., Rutten L., Garssen J., Vos A.P., Hartog A. Lipoproteins attenuate TLR2 and TLR4 activation by bacteria and bacterial ligands with differences in affinity and kinetics // BMC Immunol. - 2016. - V. 17(1). - Pp. 42-52.

30. Wilkinson B.L., Malins L.R., Chun C.K., Payne R.J. Synthesis of MUC1-lipopeptide chimeras // Chem. Commun. (Camb.). - 2010. - V. 46(34). - Pp. 6249-51.

31. Zeng W., Chua B.Y., Grollo L., Jackson D. Structural requirement for the agonist activity of the TLR2 ligand Pam2Cys // Amino Acids. - 2010. - V. 39(2). - Pp. 471-80.

32. Zeng W., Ghosh S., Lau Y.F., Brown L.E., Jackson D.C. Highly immunogenic and totally synthetic lipopeptides as self-adjuvanting immunocontraceptive vaccines // J. Immunol. - 2002. - V. 169. - Pp. 4905-12.

33. Zeng W., Horrocks K.J., Robevska G., Wong C.Y., Azzopardi K., Tauschek M., Robins-Browne R.M., Jackson D.C. A modular approach to assembly of totally synthetic self-adjuvanting lipopeptide-based vaccines allows conformational epitope building // J. Biol. Chem. - 2011. - V. 286. - Pp.12944-51.

34. Antibiotiki i protivoinfekcionnyj immunitet [Antibiotics and anti-infectious immunity]. Ed. by Yushchuk N.D., Balmasovа I.L. Moscow: Prakticheskaya medicina. 2012. 232 p. (In Russian).

35. Dekhnich A.V., Danilov A.I. Daptomicin [Daptomicin]. Klinicheskaya mikrobiologiya, antimikrobiologiya i himioterapiya [Clinical microbiology, antimicrobiology and chemotherapy]. 2010. V. 12. No. 4. Pp. 295-313. (In Russian).

36. Zverev V.V., Bojchenko M.N. Medicinskaya mikrobiologiya, virusologiya i immunologiya [Medical microbiology, virology and immunology]. Mosсow: GEHOTAR-Media. 2010. V. 2. 447 p. (In Russian).

37. Kupriyanov V.V., Nikolaeva L.I., Zykova A.A., Mahnovskij P.I., Kotlyarov R.Yu., Ravin N.A. Immunologicheskie svojstva rekombinantnyh mozaichnyh belkov na osnove antigenov NS4A i NS4V virusa gepatita C [Immunological properties of recombinant mosaic proteins based on NS4A and NS4B antigens of the hepatitis C virus]. Voprosy virusologii [Questions of Virology]. 2018. No. 3. Pp. 32-45. (In Russian).

38. Mojsa A.A., Kolesanova E.F. Sinteticheskie peptidnye vakciny [Synthetic peptide vaccines]. Biomed. himiya [Biomedical Chemistry]. 2011. T. 57(1). Pp. 14-30. (In Russian).

39. Petrov R.V., Haitov R.M. Immunogeny i vakciny novogo pokoleniya [Immunogens and vaccines of new generation]. Mosсow: GEHOTAR-Media. 2011. 608 p. (In Russian).

40. Roit A., Brostoff J., Meil D. Vakcinaciya [Vaccination] // V kn.: Immunologiya [In the book: Immunology]. Mosсow: Mir. 2000. Pp. 361-374. (In Russian).

41. Andreansky S.S., Stambas J., Thomas P.J., Xie W., Webby R.J., Doherty P.C. Consequences of immunodominant epitope deletion for minor influenza virus-specific CD8+ T-cell responses. J. Virology. 2005. V. 79(7). Pp. 4329-39.

42. BenMohamed L., Gras-Masse H., Tartar A., Daubersies P., Brahimi K., Bossus M., Thomas A., Druilhe P. Lipopeptide immunization without adjuvant induces potent and long-lasting B, T helper, and cytotoxic T lymphocyte responses against a malaria liver stage antigen in mice and chimpanzees. Eur. J. Immunol. 1997. V. 27(5). Pp. 1242-1253.

43. Chen H.-W., Liu S.-J., Liu H.H., Kwok Y., Lin C.L., Lin L.H. Chen M.Y., Tsai J.P., Chang L.S., Chiu F.F., Leng C.H., Chen H.W. A novel technology for the production of a heterologous lipoprotein immunogen in high yield has implications for the field of vaccine design. Vaccine. 2009. V. 27. Pp. 1400-09.

44. Chiang C.Y., Pan C.H., Chen M.Y., Hsieh C.H., Tsai J.P., Liu H.H., Liu S.J., Chong P., Leng C.H., Chen H.W. Immunogenicity of a novel tetravalent vaccine formulation with four recombinant lipidated dengue envelope protein domain IIIs in mice. Sci Rep. 2016. V. 6. P. 30648. doi: 10.1038/srep30648.

45. Chong H., Xue J., Xiong S., Cong Z., Ding X., Zhu Y., Liu Z., Chen T., Feng Y., He L., Guo Y., Wei Q., Zhou Y., Qin C., He Y. A lipopeptide HIV-1/2 fusion inhibitor with highly potent in vitro, ex vivo, and in vivo antiviral activity. J. Virol. 2017. V. 91(11). pii: e00288-17. doi: 10.1128/JVI.00288-17.

46. Chong P., Huang J.H., Leng C.H., Liu S.J., Chen H.W. Recombinant lipoproteins as novel vaccines with intrinsic adjuvant. Adv. Protein Chem. Struct. Biol. 2015. V. 99. Pp. 55-74. doi: 10.1016/bs.apcsb.2015.03.003.

47. Gential G.P., Ho N.I., Chiodo F., Meeuwenoord N., Ossendorp F., Overkleeft H.S., van der Marel G.A., Filippov D.V. Synthesis and evaluation of fluorescent Pam3Cys peptide conjugates. Bioorg. Med. Chem. Lett. 2016. V. 26(15). Pp. 3641-45. doi: 10.1016/j.bmcl.

48. Ghielmetti M., Zwicker M., Ghielmetti T., Simon M.M., Villiger P.M., Padovan E. Synthetic bacterial lipopeptide analogs facilitate naive CD4+ T cell differentiation and enhance antigen-specific HLA-II-restricted responses. Eur. J. Immunol. 2005. V. 35(8). Pp. 2434-42.

49. Infante-Duarte C., Kamradt T. Lipopeptides of Borrelia burgdorferi outer surface proteins induce Th1 phenotype development in alphabeta T-cell receptor transgenic mice. Infect. Immun. 1997. V. 65(10). Pp. 4094-99.

50. Kaufmann A., Mühlradt P.F., Gemsa D., Sprenger H. Induction of cytokines and chemokines in human monocytes by Mycoplasma fermentans-derived lipoprotein MALP-2. Infect. Immun. 1999. V. 67(12). Pp. 6303-08.

51. Kiura K., Kataoka H., Yasuda M., Inoue N., Shibata K.-I. The diacylated lipopeptide FSL-1 induces TLR2-mediated Th2 responses. FEMS Immunol. & Medical. Microbiol. 2006. V. 48(1). Pp. 44-55.

52. Lex A., Wiesmüller K.H., Jung G., Bessler W.G. A synthetic analogue of Escherichia coli lipoprotein, tripalmitoyl pentapeptide, constitutes a potent immune adjuvant. J. Immunol. 1986. V. 137(8). Pp. 2676-81.

53. Maget-Dana R., Ptak M., Peypoux F., Michel G. Pore-forming properties of iturin A, a lipopeptide antibiotic. Biochim. Biophys. Acta. 1985. V. 815(3). Pp. 405-409.

54. Meena K.R., Kanwar S.S. Lipopeptides as the antifungal and antibacterial agents: applications in food safety and therapeutics. Biomed. Res. Int. 2015. V. 2015. article ID 473050. 9 p. doi: 10.1155/2015/473050.

55. Metzger J.W., Wiesmüller K.-H., Jung G. Synthesis of N-Fmoc protected derivatives of S-(2,3-dihydroxypropyl)-cysteine and their application in peptide synthesis. Int. J. Pep. Protein. Res. 1991. V. 38. Pp. 545-554.

56. Mühlradt P.F., Kieß M., Meyer H., Süßmuth R., Jung G. Isolation, structure elucidation, and synthesis of a macrophage stimulatory lipopeptide from mycoplasma fermentans acting at picomolar concentration. J. Exp. Med. 1997. V. 185. Pp. 1951-58.

57. Ozinsky A., Underhill D.M., Fontenot J.D., Hajjar A.M., Smith K.D., Wilson C.B., Schroeder L., Aderem A. The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between Toll-like receptors. Proc. Natl. Acad. Sci. USA. 2000. V. 97. Pp. 13766-71.

58. Reitermann A., Metzger J., Wiesmüller K.H., Jung G., Bessler W.G. Lipopeptide derivatives of bacterial lipoprotein constitute potent immune adjuvants combined with or covalently coupled to antigen or hapten. Biol. Chem. Hoppe Seyler. 1989. V. 370(4). Pp. 343-352.

59. Revets H., Pynaert G., Grooten J., De Baetselier P. Lipoprotein I, a TLR2/4 ligand modulates Th2-driven allergic immune responses. J. Immunol. 2005. V. 174(2). Pp. 1097-1103.

60. Samayoa L., Diaz-Mitoma F., Azizi A. Characterization of a branched lipopeptide candidate vaccine against influenza A/Puerto Rico 8/34 which is recognized by human B and T-cell immune responses. Virlogy J. 2011. V. 8. Pp. 309-329.

61. Stein U., Bergmann S., Scheffer G.L., Scheper R.J., Royer H.D., Schlag P.M., Walther W. YB-1 facilitates basal and 5-fluorouracil-inducible expression of the human major vault protein (MVP) gene. Oncogene. 2005. V. 24. Pp. 3606-18.

62. van Bergenhenegouwen J., Kraneveld A.D., Rutten L., Garssen J., Vos A.P., Hartog A. Lipoproteins attenuate TLR2 and TLR4 activation by bacteria and bacterial ligands with differences in affinity and kinetics. BMC Immunol. 2016. V. 17(1). Pp. 42-52.

63. Wilkinson B.L., Malins L.R., Chun C.K., Payne R.J. Synthesis of MUC1-lipopeptide chimeras // Chem. Commun. (Camb.). 2010. V. 46(34). Pp. 6249-51.

64. Zeng W., Chua B.Y., Grollo L., Jackson D. Structural requirement for the agonist activity of the TLR2 ligand Pam2Cys. Amino Acids. 2010. V. 39(2). Pp. 471-80.

65. Zeng W., Ghosh S., Lau Y.F., Brown L.E., Jackson D.C. Highly immunogenic and totally synthetic lipopeptides as self-adjuvanting immunocontraceptive vaccines // J. Immunol. 2002. V. 169. Pp. 4905-12.

66. Zeng W., Horrocks K.J., Robevska G., Wong C.Y., Azzopardi K., Tauschek M., Robins-Browne R.M., Jackson D.C. A modular approach to assembly of totally synthetic self-adjuvanting lipopeptide-based vaccines allows conformational epitope building. J. Biol. Chem. 2011. V. 286. Pp. 12944-51.


Для цитирования:


Белявцев А.Н., Николаева Л.И., Шастина Н.С., Куприянов В.В. Иммуногенные липопептиды. БИОМЕДИЦИНА. 2018;(4):88-95.

For citation:


Belyavtsev A.N., Nikolaeva L.I., Shastina N.S., Koupriyanov V.V. Immunogenic lipopeptides. Journal Biomed. 2018;(4):88-95. (In Russ.)

Просмотров: 8


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2074-5982 (Print)
ISSN 2074-5982 (Online)