Preview

Journal Biomed

Advanced search

Leutragin Inhibits Expression of Cytokines, Including Interleukin-6, in a “Cytokine Storm” Model in C57BL/6Y Mice with Induced Acute Respiratory Distress Syndrome

https://doi.org/10.33647/2074-5982-16-4-34-43

Abstract

This study aims to investigate effects of leutragin, an analogue of endogenous hexapeptide dynorphin 1-6, on the expression of pro-inflammatory cytokines and type I interferons in an experimental model of fatal acute respiratory distress syndrome (ARDS) in C57BL/6Y mice. The expression of interleukin-1β (IL-1β), interleukin-6 (IL-6), tumour necrosis factor (TNF-α), interferons α (IFN-α) and β (IFN-β) in the lungs was assessed by real-time PCR. The induction of ARDS using α-galactosylceramide and E. coli lipopolysaccharide led to a multifold increase in the expression of the cytokines in the lungs. The administration of leutragin in a combined mode — intramuscular injection plus inhalation — led to a statistically significant decrease in the mRNA levels of cytokines within three hours after the start of administration. The average mRNA levels of IL-6, a key cytokine in the development of severe acute respiratory syndrome, decreased by 4.7 times (p<0.01) to reach values close to those observed in intact animals. Given the crucial role of elevated IL-6 concentrations in the development of severe forms of COVID-19, the use of leutragine for suppressing “cytokine storm” syndromes may be an effective approach to the treatment of this coronavirus infection.

About the Authors

V. N. Karkischenko
Scientific Center of Biomedical Technologies of the Federal Medical and Biological Agency of Russia
Russian Federation

Vladislav N. Karkischenko, Dr. Sci. (Med.), Prof.

143442, Moscow region, Krasnogorsk district, Svetlye gory village, building 1



I. A. Pomytkin
Scientific Center of Biomedical Technologies of the Federal Medical and Biological Agency of Russia
Russian Federation

Igor A. Pomytkin, Cand. Sci. (Chem.)

143442, Moscow region, Krasnogorsk district, Svetlye gory village, building 1



N. V. Petrova
Scientific Center of Biomedical Technologies of the Federal Medical and Biological Agency of Russia
Russian Federation

Nataliya V. Petrova

143442, Moscow region, Krasnogorsk district, Svetlye gory village, building 1



M. S. Nesterov
Scientific Center of Biomedical Technologies of the Federal Medical and Biological Agency of Russia
Russian Federation

Maxim S. Nesterov

143442, Moscow region, Krasnogorsk district, Svetlye gory village, building 1



R. A. Ageldinov
Scientific Center of Biomedical Technologies of the Federal Medical and Biological Agency of Russia
Russian Federation

Ruslan A. Ageldinov

143442, Moscow region, Krasnogorsk district, Svetlye gory village, building 1



L. V. Zotova
Scientific Center of Biomedical Technologies of the Federal Medical and Biological Agency of Russia
Russian Federation

Lyudmila V. Zotova

143442, Moscow region, Krasnogorsk district, Svetlye gory village, building 1



E. M. Koloskova
Scientific Center of Biomedical Technologies of the Federal Medical and Biological Agency of Russia
Russian Federation

Elena M. Koloskova, Cand. Sci. (Biol.)

143442, Moscow region, Krasnogorsk district, Svetlye gory village, building 1



V. V. Slobodenyuk
Scientific Center of Biomedical Technologies of the Federal Medical and Biological Agency of Russia
Russian Federation

Vladimir V. Slobodenyuk, Cand. Sci. (Biol.)

143442, Moscow region, Krasnogorsk district, Svetlye gory village, building 1



V. I. Skvortsova
Federal Medical and Biological Agency of Russia
Russian Federation

Veronika I. Skvortsova, Dr. Sci. (Med.), Prof., Corresponding Member of the Russian Academy of Sciences

123182, Moscow, Volokolamskoye highway, 30



References

1. Karkischenko N.N., Karkischenko V.N., Fokin Yu.V., Kharitonov S.Yu. Nejrovizualizaciya effektov psihoaktivnyh sredstv posredstvom normalizacii elektrogramm golovnogo mozga [Neuroimaging of the Effects of Psychoactive Substances by Means of Normalization of Brain Electrograms]. Biomedicina [Journal Biomed]. 2019;15(1):12–34. (In Russian). DOI: 10.33647/20745982-15-1-12-34.

2. Pomytkin I.A., Karkischenko V.N., Fokin Yu.V., Nesterov M.S., Petrova N.V. Model’ fatal’nogo ostrogo porazheniya legkih i ostrogo respiratornogo distress-sindroma [A fatal model of acute lung injury and acute respiratory distress syndrome]. Biomedicina [Journal Biomed]. 2020;16(4):24–33. (In Russian). DOI: 10.33647/2074-5982-16-4-24-33.

3. Rukovodstvo po laboratornym zhivotnym i al’ternativnym modelyam v biomedicinskih issledovaniyah [Manual on laboratory animals and alternative models in biomedical research]. Ed. by N.N. Karkischenko, et al. Moscow: Profil’-2S Publ., 2010. 358 p. (In Russian).

4. Chen Y., Feng Z., Diao B., Wang R., Wang G., Wang C., et al. The Novel Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Directly Decimates Human Spleens and Lymph Nodes. MedRxiv. 2020. DOI: 10.1101/2020.03.27.20045427.

5. Diao B., Wang C., Tan Y., Chen X., Liu Y., Ning L., et al. Reduction and Functional Exhaustion of T Cells in Patients With Coronavirus Disease 2019 (COVID-19). Front. Immunol. 2020;1(11):827. DOI: 10.3389/fimmu.2020.00827.

6. Fazalul Rahiman S.S., Morgan M., Gray P., Shaw P.N., Cabot P.J. Dynorphin 1-17 and Its N-Terminal Biotransformation Fragments Modulate Lipopolysaccharide-Stimulated Nuclear Factor-kappa B Nuclear Translocation, Interleukin-1beta and Tumor Necrosis Factor-alpha in Differentiated THP-1 Cells. PLoS One. 2016;11(4):e0153005. DOI: 10.1371/journal.pone.0153005.

7. Gao Y.M., Xu G., Wang B., Liu B.C. Cytokine storm syndrome in coronavirus disease 2019: A narrative review. J. Intern. Med. 2020. DOI: 10.1111/joim.13144.

8. Giamarellos-Bourboulis E.J., Netea M.G., Rovina N., Akinosoglou K., Antoniadou A., Antonakos N., et al. Complex Immune Dysregulation in COVID-19 Patients with Severe Respiratory Failure. Cell Host Microbe. 2020;27(6):992–1000.e3. DOI: 10.1016/j.chom.2020.04.009.

9. Gubernatorova E.O., Gorshkova E.A., Polinova A.I., Drutskaya M.S. IL-6: Relevance for immunopathology of SARS-CoV-2. Cytokine Growth Factor Rev. 2020;53:13–24. DOI: 10.1016/j.cytogfr.2020.05.009.

10. Henry B.M., de Oliveira M.H.S., Benoit S., Plebani M., Lippi G. Hematologic, biochemical and immune biomarker abnormalities associated with severe illness and mortality in coronavirus disease 2019 (COVID-19): a meta-analysis. Clin. Chem. Lab. Med. 2020;58(7):1021–1028. DOI: 10.1515/cclm-20200369.

11. Liu T., Zhang L., Joo D., Sun S.C. NF-κB signaling in inflammation. Signal Transduct. Target. Ther. 2017;2:17023. DOI: 10.1038/sigtrans.2017.23.

12. Luo M., Liu J., Jiang W., Yue S., Liu H., Wei S. IL-6 and CD8 + T cell counts combined are an early predictor of in-hospital mortality of patients with COVID-19. JCI Insight. 2020;5(13):139024. DOI: 10.1172/jci.insight.139024.

13. McGonagle D., Sharif K., O’Regan A., Bridgewood C. The Role of Cytokines including Interleukin-6 in COVID-19 induced Pneumonia and Macrophage Activation Syndrome-Like Disease. Autoimmun. Rev. 2020;19(6):102537. DOI: 10.1016/j.autrev.2020.102537.

14. Perricone C., Triggianese P., Bartoloni E., Cafaro G., Bonifacio A.F., Bursi R., et al. The anti-viral facet of anti-rheumatic drugs: Lessons from COVID-19. J. Autoimmun. 2020;111:102468. DOI: 10.1016/j.jaut.2020.102468.

15. Sin W.X., Yeong J.P., Lim T.J.F., Su I.H., Connolly J.E., Chin K.C. IRF-7 Mediates Type I IFN Responses in Endotoxin-Challenged Mice. Front. Immunol. 2020;11:640. DOI: 10.3389/fimmu.2020.00640.

16. Vabret N., Britton G.J., Gruber C., Hegde S., Kim J., Kuksin M., et al. Sinai Immunology Review Project. Immunology of COVID-19: Current State of the Science. Immunity. 2020;52(6):910–941. DOI: 10.1016/j.immuni.2020.05.002.

17. Wang F., Nie J., Wang H., Zhao Q., Xiong Y., Deng L., et al. Characteristics of Peripheral Lymphocyte Subset Alteration in COVID-19 Pneumonia. J. Infect. Dis. 2020;221(11):1762–1769. DOI: 10.1093/infdis/jiaa150.

18. Xu B., Fan C.Y., Wang A.L., Zou Y.L., Yu Y.H., He C., et al. Suppressed T cell-mediated immunity in patients with COVID-19: A clinical retrospective study in Wuhan, China. J. Infect. 2020;81(1):e51–e60. DOI: 10.1016/j.jinf.2020.04.012.


Review

For citations:


Karkischenko V.N., Pomytkin I.A., Petrova N.V., Nesterov M.S., Ageldinov R.A., Zotova L.V., Koloskova E.M., Slobodenyuk V.V., Skvortsova V.I. Leutragin Inhibits Expression of Cytokines, Including Interleukin-6, in a “Cytokine Storm” Model in C57BL/6Y Mice with Induced Acute Respiratory Distress Syndrome. Journal Biomed. 2020;16(4):34-43. (In Russ.) https://doi.org/10.33647/2074-5982-16-4-34-43

Views: 987


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2074-5982 (Print)
ISSN 2713-0428 (Online)