Preview

Journal Biomed

Advanced search

Chimeric Construct Engineering with Human Variant HLA-A*02:01:01:01

https://doi.org/10.33647/2074-5982-17-1-10-23

Abstract

The containment of lethal acute lung injuries, acute respiratory distress syndrome (ARDS) and cytokine storm arising from severe interstitial pathology, including COVID-19, requires an efficient design and therapeutic implementation of new drugs and biomedical technologies. This demand calls for adequate biomodels in preclinical research and trial. Genetic variations between ethnic groups condition the specific mechanisms of drug efficiency. Modelling this population-specific genetic polymorphism allows a comprehensive research into the molecular bases of pharmacological action, also in immune biology. The engineered chimeric molecule encodes a MHC class I product that combines human ß2-microglobulin, the α1 and α2 domains of Russian ethnic allelic variant HLA-A*02:01:01:01 and murine H2-K complex α3 domain. The linear chimeric gene fragment will be used to obtain humanised lineages of transgenic mice.

About the Authors

V. N. Karkischenko
Scientifi c Center of Biomedical Technologies of the Federal Medical and Biological Agency of Russia
Russian Federation

Vladislav N. Karkischenko - Dr. Sci. (Med.), Prof..

143442, Moscow Region, Krasnogorskiy District, Svetlye Gory Village, building 1



N. V. Petrova
Scientifi c Center of Biomedical Technologies of the Federal Medical and Biological Agency of Russia
Russian Federation

Nataliya V. Petrova

143442, Moscow Region, Krasnogorskiy District, Svetlye Gory Village, building 1



E. S. Savchenko
Scientifi c Center of Biomedical Technologies of the Federal Medical and Biological Agency of Russia
Russian Federation

Elena S. Savchenko

143442, Moscow Region, Krasnogorskiy District, Svetlye Gory Village, building 1


N. S. Ogneva
Scientifi c Center of Biomedical Technologies of the Federal Medical and Biological Agency of Russia
Russian Federation

Nastasya S. Ogneva

143442, Moscow Region, Krasnogorskiy District, Svetlye Gory Village, building 1



E. M. Koloskova
All-Russian Research Institute of Physiology, Biochemistry and Animal Nutrition — branch of the Federal Scientifi c Centre of Animal Husbandry — All-Russian Institute of Animal Husbandry named after acad. L.K. Ernst
Russian Federation

Elena M. Koloskova - Cand. Sci. (Biol.)

249013, Kaluga Region, Borovsk, Institut Settlement



S. V. Maksimenko
Scientifi c Center of Biomedical Technologies of the Federal Medical and Biological Agency of Russia
Russian Federation

Sergey V. Maksimenko - Cand. Sci. (Biol.)

143442, Moscow Region, Krasnogorskiy District, Svetlye Gory Village, building 1



V. A. Manuvera
Federal Research and Clinical Centre of Physical-Chemical Medicine of the Federal Medical and Biological Agency of Russia
Russian Federation

Valentin A. Manuvera - Cand. Sci. (Biol.)

119435, Moscow, Malaya Pirogovskaya Street, 1a



P. A. Bobrovsky
Federal Research and Clinical Centre of Physical-Chemical Medicine of the Federal Medical and Biological Agency of Russia
Russian Federation

Pavel A. Bobrovsky

119435, Moscow, Malaya Pirogovskaya Street, 1a



V. N. Lazarev
Federal Research and Clinical Centre of Physical-Chemical Medicine of the Federal Medical and Biological Agency of Russia
Russian Federation

Vassili N. Lazarev - Dr. Sci. (Biol.), Assoc. Prof.

119435, Moscow, Malaya Pirogovskaya Street, 1a



References

1. Dulya M.S., Karkischenko V.N., Khvostov D.V., Ageldinov R.A., Karkischenko N.N. Tsitokinovyy profil’ laboratornykh inbrednykh i transgennykh myshey v otsenke immunologicheskogo statusa i poiske novykh farmakologicheskikh regulyatorov [Cytokine Profile of Laboratory Inbred and Transgenic Mice in the Evaluation of the Immunological Status and Search for New Pharmacological Regulators]. Biomeditsina [Journal Biomed]. 2019; 15(2):54-62. (In Russian). DOI: 10.33647/2074-5982-15-2-54-62.

2. Karkischenko V.N., Bolotskikh L.A., Kapanadze G.D., Karkischenko N.N., Koloskova E.M., Maksimenko S.V., Matveyenko E.L., Petrova N.V., Ryabykh V.P., Revyakin A.O., Stankova N.V., Semenov Kh.Kh. Sozdaniye liniy transgennykh zhivot-nykh-modeley s genami cheloveka NAT1 i NAT2 [Creation of lines of transgenic animal models with human genes NAT1 and NAT2]. Biomeditsina [Journal Biomed]. 2016;1:74-84. (In Russian).

3. Karkischenko V.N., Pomytkin I.A., Skvortsova V.I. Opioidergicheskaya sistema immunnykh kletok: no-vaya farmakologicheskaya mishen’ v terapii «tsitokinovogo shtorma» [The Opioidergic System of Immune Cells: A New Pharmacological Target in the Therapy of “Cytokine Storm”]. Biomeditsina [Journal Biomed]. 2020;16(4):14-23. (In Russian). DOI: 10.33647/2074-5982-16-4-14-23.

4. Karkischenko V.N., Ryabykh V.P., Bolotskikh L.A., Semenov Kh.Kh., Kapanadze G.D., Petrova N.V., Ezerskiy V.A., Zhukova O.B., Koloskova E.M., Maksimenko S.V., Stolyarova V.N., Trubitsyna T.P. Fiziologo-embriologicheskiye aspekty sozdaniya transgennykh myshey s integrirovannymi genami NAT1 i NAT2 cheloveka [Physiological and embryological aspects of creating transgenic mice with integrated human NAT1 and NAT2 genes]. Biomeditsina [Journal Biomed]. 2016;1:52-65. (In Russian).

5. arkischenko V.N., Ryabykh V.P., Karkischenko N.N., Dulya M.S., Ezerskiy V.A., Koloskova E.M., Lazarev V.N., Maksimenko S.V., Petrova N.V., Stolyarova V.N., Trubitsyna T.P. Molekulyarno-geneticheskie aspekty tekhnologii polucheniya transgennykh myshej s in-tegrirovannymi genami N-atsetiltransferazy (NAT1 i NAT2) cheloveka [Molecular and genetic aspects of the technology for producing transgenic mice with integrated genes of human N-acetyltransferase (NAT1 and NAT2)]. Biomeditsina [Journal Biomed]. 2016;1:4-17. (In Russian).

6. Karkischenko N.N. Al’ternativy biomeditsiny. T. 2. Klassika i al’ternativy farmakotoksikologii [Biomedicine alternatives. Vol. 2. Classics and alternatives of pharmacotoxicology]. Moscow: Izdatel’stvo VPK, 2007:448. (In Russian).

7. Karkischenko N.N., Petrova N.V., Slobodenyuk V.V. Vysokospetsifichnye vidovye prajmery k genam Nat1 i Nat2 dlya sravnitel’nykh issledovanij u cheloveka i laboratornykh zhivotnykh [Highly specific species primers for the Nat1 and Nat2 genes for comparative studies in humans and laboratory animals]. Biomeditsina [Journal Biomed]. 2014;1(2):4-24. (In Russian).

8. Karkischenko N.N., Ryabykh V.P., Karkischenko V.N., Koloskova E.M. Sozdanie guman-izirovannykh myshey dlya farmakotoksikologicheskikh issledovaniy (uspekhi, neudachi i perspektivy) [Creation of humanized mice for pharmacotoxicological research (successes, failures and prospects)]. Biomeditsina [Journal Biomed]. 2014;1(3):4-22. (In Russian).

9. Pomytkin I.A., Karkischenko V.N., Fokin Yu.V., Nesterov M.S., Petrova N.V. Model’ fa-tal’nogo ostrogo porazheniya legkikh i ostrogo respiratornogo distress-sindroma [A Model of Fatal Acute Lung Injury and Acute Respiratory Distress Syndrome]. Biomeditsina [Journal Biomed]. 2020;16(4):24-33. (In Russian). DOI: 10.33647/2074-5982-16-4-24-33.

10. Ali M.K., Shah D.J., del Rio C. Preparing Primary Care for COVID-20. J. Gen Intern. Med. 2020. DOI: 10.1007/s11606-020-05945-5.

11. Arnold B., Hammerling G.J. MHC class-I transgenic mice. Annu. Rev. Immunol. 1991;9:297-322. DOI: 10.1146/annurev.iy.09.040191.001501.

12. Cohen J. The coronavirus may sometimes slip its genetic material into human chromosomes — but what does that mean? Science. 2020. DOI:10.1126/science.abg2000.

13. de Abreu M.S., Giacomini A.C.V., Genario R., Dos Santos B.E., da Rosa L.G., Demin K.A., et al. Neuropharmacology, pharmacogenetics and pharmacogenomics of aggression: The zebrafish model. Pharmacol. Res. 2019;141:602-608. DOI: 10.1016/j.phrs.2019.01.044.

14. Engelhard V.H., Lacy E., Ridge J.P. Influenza A-specific, HLA-A2.1 restricted cytotoxic T lymphocytes from HLA-A2.1 transgenic mice recognize fragments of the M1 protein. J. Immunol. 1991;146:1226-1232.

15. Gray S.J., Foti S.B., Schwartz J.W., Bachaboina L., Taylor-Blake B., Coleman J., et al. Optimizing promoters for recombinant adeno-associated virus-mediated gene expression in the peripheral and central nervous system using self-complementary vectors. Hum. Gene Ther. 2011;22(9):1143-1153. DOI: 10.1089/hum.2010.245.

16. Kuri-Cervantes L., Pampena M.B., Meng W., Rosenfeld A.M., Ittner C.A.G., Weisman A.R., et al. Comprehensive mapping of immune perturbations associated with severe COVID-19. Sci. Immunol. 2020;5(49):eabd7114. DOI: 10.1126/sciimmunol.abd7114.

17. Lee Y.B., Glover C.P., Cosgrave A.S., Bienemann A., Uney J.B. Optimizing regulatable gene expression using adenoviral vectors. Exp. Physiol. 2005;90(1):33-37. DOI: 10.1113/expphysiol.2004.028209.

18. Man S., Ridge J.P., Engelhard V.H. Diversity and dominance among TCR recognizing HLA-A2.1+ influenza matrix peptide in human MHC class I transgenic mice. J. Immunol. 1994;153(10):4458-4467.

19. Marshall S., Madabushi R., Manolis E., Krudys K., Staab A., Dykstra K., et al. Model-Informed Drug Discovery and Development: Current Industry Good Practice and Regulatory Expectations and Future Perspectives. CPT Pharmacometrics Syst. Pharmacol. 2019;8(2):87-96. DOI: 10.1002/psp4.12372.

20. Pascolo S., Bervas N., Ure J.M., Smith A.G., Lemonnier F.A., Perarnau B. HLA-A2.1-restricted education and cytolytic activity of CD8(+) T lymphocytes from beta2 microglobulin (beta2m) HLA-A2.1 monochain transgenic H-2Db beta2m double knockout mice. J. Exp. Med. 1997;185(12):2043-2051. DOI: 10.1084/jem.185.12.2043.

21. Perarnau B., Gillet A., Hakem R., Barad M., Lemonnier F.A. Human _2-microglobulin specifically enhances cell surface expression of HLA class I molecules in transfected murine cells. J. Immunol. 1988;141:1383-1389.

22. Phan V.H., Moore M.M., McLachlan A.J., Piquette-Miller M., Xu H., Clarke S.J. Ethnic differences in drug metabolism and toxicity from chemotherapy. Expert Opin. Drug Metab. Toxicol. 2009;5(3):243-257. DOI: 10.1517/17425250902800153.

23. Pooladanda V., Thatikonda S., Godugu C. The current understanding and potential therapeutic options to combat COVID-19. Life Sci. 2020;254:117765.

24. Sontoredjo T.A., de Boer A., Maitland-van der Zee A.H. Etnische farmacogenetica [Ethnicity in pharmacogenetics]. Ned Tijdschr Geneeskd. 2013;157(17):A6118.

25. Takaki T., Marron M.P., Mathews C.E., Guttmann S.T., Bottino R., Trucco M., et al. HLA-A*0201-Restricted T Cells from Humanized NOD Mice Recognize Autoantigens of Potential Clinical Relevance to Type 1 Diabetes. J. Immunol. 2006;176:3257-3265.

26. Zhang L., Richards A., Khalil A., Wogram E., Ma H., Young R.A., et al. SARS-CoV-2 RNA reverse-transcribed and integrated into the human genome. bioRxiv. The preprint server for biology. 2020. DOI: 10.1101/2020.12.12.422516.


Review

For citations:


Karkischenko V.N., Petrova N.V., Savchenko E.S., Ogneva N.S., Koloskova E.M., Maksimenko S.V., Manuvera V.A., Bobrovsky P.A., Lazarev V.N. Chimeric Construct Engineering with Human Variant HLA-A*02:01:01:01. Journal Biomed. 2021;17(1):10-23. (In Russ.) https://doi.org/10.33647/2074-5982-17-1-10-23

Views: 710


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2074-5982 (Print)
ISSN 2713-0428 (Online)