Preview

Journal Biomed

Advanced search

Structural and Functional Characteristics of Ion Channels and Methods for Investigating Their Activity

https://doi.org/10.33647/2074-5982-17-1-35-42

Abstract

I Ion channels are complex protein structures comprising the molecular systems of opening, closing, selectivity, inactivation and regulation. This review article aims to generalize and systematize literature data on the structural and functional characteristics of ion channels and methods for investigating their activity. Violations of the activity of ion channels may alter the functioning of both individual cells and the entire organism. Therefore, further research into the structural and physiological characteristics of ion channels can be considered promising and relevant.

About the Authors

E. I. Bon
Grodno State Medical University
Russian Federation

Elizaveta I. Bon - Cand. Sci. (Biol.)

230009, Grodno, Gorkogo Street, 80



N. Ye. Maksimovich
Grodno State Medical University
Russian Federation

Nataliya Ye. Maksimovich - Dr. Sci. (Med.), Prof.

230009, Grodno, Gorkogo Street, 80



References

1. Biel М., Schneider A., Wahl C. Cardiac HCN Channels: Structure, Function, and Modulation. Trends Cardiovasc. Med. 2002;5:206-212.

2. Boron W.F., Boulpaep E.L. Medical physiology. Elsevier Science (USA), 2003:1319.

3. Catterol W.A. Structure and regulation of voltagegated Ca2+channels. Annu. Rev. Cell Dev. Biol. 2000;16:521-555.

4. Cowan W.M., Sudhof T.C., Stevens C.F. Synapses. The John Hopkins University Press: Baltimore and London, 2000:267.

5. da Silva R.R., Goroso D.G., Bers D.M., Puglisi J.L. A simulator to study ionic channel’s stochastic behavior. Comput. Biol. Med. 2017;87:258-270.

6. Davis R.S., Sunil Kumar P., Sperotto M.M., Laradji M. Predictions of phaseseparation in three-component lipid membranes by the MARTINI force field. The Journal of Physical Chemistry B. 2013;117:4072-4080.

7. Dmitriev A.V., Baryshnikov V.G., Markov I.V., Tverdislov V.A. Band and point statistical estimation of channelforming polypeptides potential. Progress in Chemometrics Research. 2005;25:30-45.

8. Foskett J.K., White C., Cheung K.-H., Mak D.D. Inositol Trisphosphate Receptor Ca2+ Release Channels. Physiol. Rev. 2007;87:593-658.

9. Goldstein S.A.N., Bockenhauer D., O’Kelly I., Zilberberg N. Potassium leak channels and the KCNK family of two-P-domain subunits. Nature Rev. Neurosci. 2001;2:175-184.

10. Gururaja Rao S., Patel N., Singh H. Intracellular Chloride Channels: Novel Biomarkers in Diseases. Front. Physiol. 2020;11:96-102.

11. Hamill O., Martinac B. Molecular Basis of Mechanotransduction in Living Cells. Physiol. Rev. 2001;81:685-740.

12. Heuser J. Review of electron microscopic evidence favoring vesicle exocytosis as the structural basis of quantal release during synaptic transmission. J. Exp. Physiol. 1989;74:1051-1069.

13. Hille B. Ionic channels of excitable membranes. 3rd ed. Sunderland, MA: Sinauer, 2001:814.

14. Jeng C., Fu S., You C., Peng Y., Hsiao C., Chen T., et al. Defective Gating and Proteostasis of Human ClC-1 Chloride Channel: Molecular Pathophysiology of Myotonia Congenita. Front. Neurol. 2020;11:76-84.

15. Jentsch T.J., Stein V., Weinreich F., Zdebik A.A. Molecular Structure and Physiological Function of Chloride Channels. Physiol. Rev. 2002;82:503-568.

16. Jiang Y., Lee A., Chen J., et al. X-ray structure of a voltage-dependent Kv channel. Nature. 2003;6935:33-41.

17. Kandel E.R., Schwartz J.H., Jessel T.M. Principal of neural science. The McGraw-Hill Companies, 2002:1321.

18. Klauda J.B., Venable R.M., Freites J.A., O’Connor J.W., Tobias D.J., et al. Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. The Journal of Physical Chemistry B. 2010;114:7830-7843.

19. Korkosh V.S., Zhorov B.S., Tikhonov D.B. Folding similarity of the outer pore region in prokaryotic and eukaryotic sodium channels revealed by docking of conotoxins GIIIA, PIIIA, and KIIIA in a NavAb-based model of Nav1.4. J. Gen. Physiol. 2014;144:231-244.

20. Liu Y., Chipot C., Shao X., Cai W. The effects of 7-dehydrocholesterol on the structural properties of membranes. Physical Biology. 2011;5:56-62.

21. Manville R.W., Abbott G.W. Potassium channels act as chemosensors for solute transporters. Commun. Biol. 2020;3:90-96.

22. Papp F., Hajdu P., Tajti G., Toth A., Nagy E., Fazekas Z., et al. Periodic Membrane Potential and Ca2+ Oscillations in T Cells Forming an Immune Synapse. Int. J. Mol. Sci. 2020;21:5-11.

23. Robledo-Avila F., Ruiz-Rosado J., Brockman K., Partida-Sanchez S. The TRPM2 Ion Channel Regulates Inflammatory Functions of Neutrophils During Listeria monocytogenes Infection. Front. Immunol. 2020;11:97-103.

24. Thompson A., Lummis S. The 5-HT3 receptor as a therapeutic target. Expert Opin. Ther. Targets. 2007;4:527-540.

25. Weiger T.M., Hermann A., Levitan I.B. Modulation of calcium- activated potassium channels. J. Comp. Physiol. 2002;188:79-87.

26. Xiong Z., Pignataro G., Li M., Chang S., Simon R. Acid-sensing ion channels (ASICs) as pharmacological targets for neurodegenerative diseases. Curr. Opin. Pharmacol. 2008;8(1):25-32.

27. Yuan D., Ma Z., Tuo B., Li T., Liu X. Physiological Significance of Ion Transporters and Channels in the Stomach and Pathophysiological Relevance in Gastric Cancer. Evid. Based Complement Alternat. Med. 2020;12:28-38.


Review

For citations:


Bon E.I., Maksimovich N.Ye. Structural and Functional Characteristics of Ion Channels and Methods for Investigating Their Activity. Journal Biomed. 2021;17(1):35-42. (In Russ.) https://doi.org/10.33647/2074-5982-17-1-35-42

Views: 460


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2074-5982 (Print)
ISSN 2713-0428 (Online)