Preview

Journal Biomed

Advanced search

Drug Correction of Hypoxic Thermal Impact on Organismal Functional State

https://doi.org/10.33647/2074-5982-17-1-57-69

Abstract

The study experimentally modelled the functional state in laboratory animals under haemic hypoxia combined with thermal exposure (hyper- or hypothermia) by estimating their physical capacity with the forced swim test. Trimetazidine has been proved an effective drug agent for the correction of hypoxic hyperthermal response in a two-factor model due to its marked antihypoxic effect observed under haemic hypoxia and hypoxia combined with hyperthermia. Relative to haemic hypoxia and hypothermia, the drugs studied can be separated between three groups by corrective efficiency: weak protectors (150-200% of control level, Flamenco 250 mg/kg, trimetazidine), moderate protectors (200-300%, polypeptide mix, Flamenco 50 and 75 mg/kg, Hypoxen) and effective protectors (>300%, course intake of specialised “MioActive Sport” nutrition additive).

About the Authors

E. B. Shustov
S.N. Golikov Research and Clinical Centre for Toxicology of the Federal Medical and Biological Agency of Russia; Saint Petersburg State Chemical and Pharmaceutical University of the Ministry of Health care of Russia
Russian Federation

Evgeny B. Shustov - Dr. Sci (Med.), Prof.

192019, Saint Petersburg, Behtereva Street, 1; 197376, Saint Petersburg, Professor Popov Street, 14



Yu. V. Fokin
Scientifi c Center of Biomedical Technologies of the Federal Medical and Biological Agency of Russia
Russian Federation

Yuriy V. Fokin - Cand. Sci. (Biol.)

143442, Moscow Region, Krasnogorsk District, Svetlye Gory Village, building 1



S. L. Lyublinskiy
Scientifi c Center of Biomedical Technologies of the Federal Medical and Biological Agency of Russia
Russian Federation

Stanislav L. Lyublinskiy

143442, Moscow Region, Krasnogorsk District, Svetlye Gory Village, building 1



O. V. Alimkina
Scientifi c Center of Biomedical Technologies of the Federal Medical and Biological Agency of Russia
Russian Federation

Oksana V. Alimkina

143442, Moscow Region, Krasnogorsk District, Svetlye Gory Village, building 1



A. E. Kim
Military Medical Academy named after S.M. Kirov of the Ministry of Defense of Russia
Russian Federation

Aleksej E. Kim - Cand. Sci. (Med.)

194044, Saint Petersburg, Lebedeva Street, 6



D. Yu. Ivkin
Saint Petersburg State Chemical and Pharmaceutical University of the Ministry of Health care of Russia
Russian Federation

Dmitriy Yu. Ivkin - Cand. Sci. (Biol.).

197376, Saint Petersburg, Professor Popov Street, 14



E. L. Matveyenko
Scientifi c Center of Biomedical Technologies of the Federal Medical and Biological Agency of Russia
Russian Federation

Elena L. Matveyenko - Cand. Sci. (Econ.), Assoc. Prof.

143442, Moscow Region, Krasnogorsk District, Svetlye Gory Village, building 1



A. S. Ivkina
Saint Petersburg State Chemical and Pharmaceutical University of the Ministry of Health care of Russia
Russian Federation

Dmitriy Yu. Ivkin - Cand. Sci. (Biol.).

197376, Saint Petersburg, Professor Popov Street, 14



G. A. Plisko
Saint Petersburg State Chemical and Pharmaceutical University of the Ministry of Health care of Russia
Russian Federation

Grigory A. Plisko

197376, Saint Petersburg, Professor Popov Street, 14



M. A. Poveryaeva
Saint Petersburg State Chemical and Pharmaceutical University of the Ministry of Health care of Russia
Russian Federation

Marina A. Poveryaeva

197376, Saint Petersburg, Professor Popov Street, 14



References

1. Karkischenko V.N., Karkischenko N.N., Shustov E.B., Berzin I.A., Fokin Yu.V., Alimkina O.V. Osobennosti interpretacii pokazatelej fizicheskoj rabotos-posobnosti laboratornyh zhivotnyh po pokazatelyam plavatel’nyh testov [Features of interpretation of indicators of physical performance of laboratory animals according to indicators of swimming tests]. Biomeditsina [Journal Biomed]. 2016;4:34-46. (In Russian).

2. Karkischenko N.N., Karkischenko V.N., Shustov E.B., Kapanadze G.D., Revyakin A.O., Semenov Kh. Kh., et al. Biomedicinskoe (doklinicheskoe) izuchenie antigipoksicheskoj aktivnosti lekarstvennyh sredstv [Biomedical (preclinical) study of antihypoxic activity of drugs]: metod. rekom. MR21-44-2017. M.: FMBA Rossii, 2017:98. (In Russian).

3. Karkischenko N.N., Ujba V.V., Karkischenko V.N., Shustov E.B. Ocherki sportivnoj farmakologii. T. 1. Vektory ekstrapolyacii [Essays on sports pharmacology. V. 1. Extrapolation vectors]. M., St. Petersburg: Icing Publ, 2013:288. (In Russian).

4. Novikov V.S., Karkischenko V.N., Shustov E.B. Funkcional’noe pitanie cheloveka pri ekstremal’nyh vozdejstviyah [Functional nutrition of a person under extreme impacts]. St. Petersburg: Polytekhnika-print Publ., 2017:346. (In Russian).

5. Novikov V.S., Soroko S.I., Shustov E.B. Dezadaptacionnye sostoyaniya cheloveka pri ekstremal’nyh vozdejstviyah i ih korrekciya [Deadaptation states of a person under extreme impacts and their correction]. St. Petersburg: Polytekhnika-print Publ., 2018:548. (In Russian).

6. Okovityj S.V., Petrova N.V., Shustov E.B., Belyh M.A., Kirillova N.V., Spasenkova O.N., et al. Metodologiya sovmestnogo analiza odnovremenno protekayushchih patologicheskih processov u laboratornyh zhivotnyh [The methodology of joint analysis of simultaneous processing pathological processes in laboratory animals]. Biomeditsina [Journal Biomed]. 2019;15(4):82-97. https://doi.org/10.33647/2074-5982-15-4-82-97. (In Russian).

7. Ainslie P.N., Poulin M.J. Ventilatory, cerebrovascular, and cardiovascular interactions in acute hypoxia: regulation by carbon dioxide. J. Appl. Physiol. 2004;97(1):149-159.

8. Barlunkowa R., Jansky L., Mejsnar I. Nonshivering thermogenesis and cold adaptation. Nonshivering thermogenesis. Ed. L. Jansky. Pr.: Academia, 1971:3955.

9. Cooper D.M., Barstow T.J., Bergner A., Lee W.N. Blood glucose turnover during high- and low-intensity exercise. Am. J. Physiol. 1989;257(3(1)):405-412.

10. De Groot V., Beckerman H., Lankhorst G.J., Bouter L.M. How to measure comorbidity: a critical review of available methods. J. Clin. Epidemiol. 2003;56(3):221-229.

11. De Leiris J., Boucher F. Intervention in ischemia. Reperfusion syndrome. Rationale for trimetazidine. Rev. Port. Cardiol., 1994;13(9):661-667.

12. European Convention for the Protection of Vertebrate Animals Used for Experimental and other Scientific Purposes (ETS 123), Strasbourg, 1986.

13. Fukuda R., Zhang H., Kim J.W., Shimoda L., Dang C.V., Semenza G.L. HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells. Cell. 2007;129(1):111-122.

14. Goodall S., Twomey R., Amann M. Acute and chronic hypoxia: implications for cerebral function and exercise tolerance. Fatigue. 2014;2:73-92.

15. Guyenet P.G. Regulation of breathing and autonomic outflows by chemoreceptors. Compr. Physiol. 2014; 4:1511-1562.

16. Hayward I.S. The physiology of immersion hypothermia / The nature and treatment of hypothermia. London: Groom Helm., 1993:26-28.

17. Heerlein K., Schulze A., Hotz L., Bartsch P., Mairbaurl H. Hypoxia decreases cellular ATP demand and inhibits mitochondrial respiration of a549 cells. Am. J. Respir. Cell. Mol. Biol. 2005;32(1):44-51.

18. Sarkar S., Banerjee P.K., Selvamurthy W. High altitude hypoxia: an intricate interplay of oxygen responsive macroevents and micromolecules. Mol. Cel. Biochem. 2003;253:287-305.


Review

For citations:


Shustov E.B., Fokin Yu.V., Lyublinskiy S.L., Alimkina O.V., Kim A.E., Ivkin D.Yu., Matveyenko E.L., Ivkina A.S., Plisko G.A., Poveryaeva M.A. Drug Correction of Hypoxic Thermal Impact on Organismal Functional State. Journal Biomed. 2021;17(1):57-69. (In Russ.) https://doi.org/10.33647/2074-5982-17-1-57-69

Views: 537


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2074-5982 (Print)
ISSN 2713-0428 (Online)