Preview

Journal Biomed

Advanced search

Study of the neuroprotective activity of mafedine, an alpha-2 adrenergic receptor agonist, by modeling a traumatic brain injury in rats

https://doi.org/10.33647/2074-5982-15-1-62-77

Abstract

In this study, the neuroprotective activity of alpha-2 adrenergic receptor agonist (6-oxo-1-phenyl-2- (phenylamino)-1,6-dihydropyrimidine-4-sodium olate) (mafedine) at the doses of 2.5 and 5 mg/kg was estimated by modelling a traumatic brain injury in rats. The effect of mafedine on rat behaviour and their motor activity was also assessed following such conventional tests as limb placing, open field, elevated plus maze, cylinder, beam walking and staircase. A morphological analysis of the amount of brain damage in the experimental animals was carried out on the 7th day following injury. In addition, the protein composition of the cerebrospinal fluid was investigated. The effects of mafedine were assessed in a comparative perspective with clonidine. The administration of mafedine at a dose of 2.5 mg/kg to rats after brain trauma is shown to lead to an increase in their overall motor activity and an improvement of fore- and hindlimb motor function without any negative behavioural effects. The studied compound is established to have no effect on the protein composition of the cerebrospinal fluid; however, it decreased the overall size of the damaged area by the 7th day after injury. Moreover, mafedine is shown to decrease the intensity of inflammation processes in the damaged area in rats with traumatic brain injuries. In comparison with clonidine, mafedine demonstrated a higher efficacy in most of the tests. Yohimbine abolished most of the beneficial effects of mafedine; therefore, the positive effects of mafedine are likely to be related to its action on alpha-2 adrenergic receptors.

About the Authors

Yu. I. Sysoev
Saint Petersburg State Chemical Pharmaceutical Academy; Institute of Translational Biomedicine of the Saint Petersburg State University
Russian Federation

197376, Saint Petersburg, Professora Popova str., 14A;

199034, Saint Petersburg, Universitetskaya embankment, 7/9 



S. G. Dagaev
Institute of Toxicology of the Federal Medical Biological Agency of Russia
Russian Federation

Cand. Sci. (Med.),

192019, Saint Petersburg, Bekhtereva str., 1 



L. G. Kubarskaja
Institute of Toxicology of the Federal Medical Biological Agency of Russia
Russian Federation

Candidate of Biological Sciences, 

192019, Saint Petersburg, Bekhtereva str., 1 



O. N. Gaikova
Institute of Toxicology of the Federal Medical Biological Agency of Russia
Russian Federation

Dr. Sci. (Med.), Prof.,

192019, Saint Petersburg, Bekhtereva str., 1 



B. C. Uzuegbunam
Saint Petersburg State Chemical Pharmaceutical Academy
Russian Federation
197376, Saint Petersburg, Professora Popova str., 14A


K. Modise
Saint Petersburg State Chemical Pharmaceutical Academy
Russian Federation
197376, Saint Petersburg, Professora Popova str., 14A


T. L. Makwana
Saint Petersburg State Chemical Pharmaceutical Academy
Russian Federation
197376, Saint Petersburg, Professora Popova str., 14A


S. V. Okovitiy
Saint Petersburg State Chemical Pharmaceutical Academy
Russian Federation

Dr. Sci. (Med.), Prof.,

197376, Saint Petersburg, Professora Popova str., 14A 



References

1. Anisimova N.A. Farmakologicheskaya harakteristika mafedina [Pharmacological characterization of mafedine]: … dis. kand. biol. nauk [the dissertation …candidate of biological sciences]. Leningrad chemical-pharmaceutical institute. Leningrad, 1984. (In Russian).

2. Bernshtejn N.A. Ocherki o fiziologii dvizhenij i fiziologii aktivnosti [Essays on the physiology of movements and physiology of activity]. Moscow: Medicina. 1966. 58 p. (In Russian).

3. Merkulov G.A. Kurs patogistologicheskoj tekhniki [Course of pathohistological techniques]. Leningrad: MEDGIZ, 1961. 340 p. (In Russian).

4. Silachev D.N. Izuchenie novyh nejroprotektorov na modeli fokal’noj ishemii golovnogo mozga [The study of new neuroprotectors on the model of focal cerebral ischemia]: dis. … kand. biol. nauk [the dissertation …candidate of biological sciences]. Lomonosov Moscow State University. Moscow, 2009. (In Russian).

5. Sysoev Yu.I., Okovityj S.V., Uzuegbunam B.Ch. Vliyanie novogo proizvodnogo diehtilaminoehtanola na vyrazhennost’ nevrologicheskogo deficita u krys posle cherepno-mozgovoj travmy [The influence of new diethylaminoethanol compound on the neurologic deficit in rats after traumatic brain injury]. Biomedicina [Biomedicine]. 2018. No. 2. Pp. 95–105. (In Russian).

6. Sysoev Yu.I., Musienko P.E., Okovityj S.V. Vliyanie adrenergicheskih i holinergicheskih sredstv na vosstanovlenie dvigatel’nyh funkcij pri porazhenii CNS [Influence of cholinergic and adrenergic agents on the recovery of locomotor functions after CNS damage]. Jeksperimental’naya i klinicheskaya farmakologiya [Experimental and clinical pharamcology]. 2017. T. 80. No. 7. Pp. 37–44. (In Russian).

7. Albert P.R., Vahid-Ansari F., Luckhart C. Serotonin-prefrontal cortical circuitry in anxiety and depression phenotypes: pivotal role of pre- and post-synaptic 5-HT1A receptor expression. Front Behav Neurosci. 2014. Vol. 8. Pp. 199.

8. Isaev N.K., Novikova S.V., Stelmashook E.V., et al. Mitochondria-targeted plastoquinone antioxidant skqr1 decreases trauma-induced neurological deficit in rat. Biochemistry (Moscow). 2012. Vol.77, № 9. P. 996–999.

9. Jasper J.R., Lesnick J.D., Chang L.K., et al. Ligand efficacy and potency at recombinant alpha2 adrenergic receptors: agonist-mediated [35S] GTPgammaS binding. Biochem Pharmacol. 1998. Vol. 55. Pp. 1035–1043.

10. Jiang L., Hu M., Lu Y., et al. The protective effects of dexmedetomidine on ischemic brain injury: Ameta-analysis. J Clin Anesth. 2017. Vol. 40. Pp. 25–32.

11. Kamibayashi T., Maze M. Clinical uses of α2-adrenergic agonists. Anesthesiology. 2000. Vol. 93. Pp. 1345– 1349.

12. Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970. Vol. 227. Pp. 680–685.

13. Lowry O.H. Protein measurement with the folin phenol reagent. J. Biol. Chem. 1951. Vol. 193. Pp. 265–275.

14. Millan M.J., Newman-Tancredi A., Audinot V., et al. Agonist and antagonist actions of yohimbine as compared to fluparoxan at alpha (2)-adrenergic receptors (AR)s, serotonin (5-HT) (1A), 5-HT(1B), 5-HT(1D) and dopamine D (2) and D (3) receptors. Significance for the modulation of frontocortical monoaminergic transmission and depressive states. Synapse. 2000. Vol. 35. No. 2. Pp. 79–95.

15. Nacif-Coelho C., Correa-Sales C., Chang L.L., Maze M. Perturbation of ion channel conductance alters the hypnotic response to the alpha 2-adrenergic agonist dexmedetomidine in the locus coeruleus of the rat. Anesthesiology. 1994. Vol. 81. Pp. 1527–1534.

16. Nirogi R., Kandikere V., Mudigonda K., et al. A simple and rapid method to collect the cerebrospinal fluid of rats and its application for the assessment of drug penetration into the central nervous system. J. Neurosci Methods. 2009. Vol. 178. No. 1. Pp. 116–119.

17. Silva R.H., Kameda S.R., Carvalho R.C., et al. Anxiogenic effect of sleep deprivation in the elevated plusmaze test in mice. Psychopharmacology (Berl). 2004. Vol. 176. Pp. 115–122.

18. Walf A.A., Frye C.A. The use of elevated plus maze as an assay of anxiety-related behavior in rodents. Nat Protoc. 2007. Vol. 2. No. 2. Pp. 322–328.

19. Wen R., Cheng T., Li Y., et al. Alpha-2 adrenergic agonists induce basic fibroblast growth factor expression in photoreceptors in vivo and ameliorate light damage. J Neurosci. 1996. Vol. 16. No. 19. Pp. 5986–5992.

20. Wilson L., Stewart W., Dams-O’Connor K., et al. The chronic and evolving neurological consequences of traumatic brain injury. Lancet Neurol. 2017. Vol. 16. No. 10. Pp. 813–825.

21. Wrenn C.C., Heitzer A.M., Roth A.K., et al. Effects of clonidine and methylphenidate on motor activity in Fmr1 knockout mice. Neurosci Lett. 2015. Vol. 585. Pp. 109–113.

22. Zetterberg H., Smith D.H., Blennow K. Biomarkers of mild traumatic brain injury in cerebrospinal fluid and blood. Nat Rev neurol. 2013. Vol. 9. No. 4. Pp. 201–210.

23. Zhang Y. Clonidine preconditioning decreases infarct size and improves neurological outcome from transient forebrain ischaemia in the rat. Neuroscience. 2004. Vol. 125. No. 3. Pp. 625–631.

24. Zhang Y., Kimelberg H.K. Neuroprotection by alpha 2-adrenergic agonists in cerebral ischemia. Curr. Neuropharmacol. 2005. Vol. 3. No. 4. Pp. 317–323.

25. Zilles K., Qü M., Schleicher A. Regional distribution and heterogeneity of alpha-adrenoceptors in the rat and human central nervous system. J. Hirnforsch. 1993. Vol. 34. No. 2. Pp. 123–132.


Review

For citations:


Sysoev Yu.I., Dagaev S.G., Kubarskaja L.G., Gaikova O.N., Uzuegbunam B.C., Modise K., Makwana T.L., Okovitiy S.V. Study of the neuroprotective activity of mafedine, an alpha-2 adrenergic receptor agonist, by modeling a traumatic brain injury in rats. Journal Biomed. 2019;(1):62-77. (In Russ.) https://doi.org/10.33647/2074-5982-15-1-62-77

Views: 944


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2074-5982 (Print)
ISSN 2713-0428 (Online)