Preview

Journal Biomed

Advanced search

USE OF GENOME EDITING TECHNOLOGIES: ACHIEVEMENTS AND FURURE PROSPECTS

https://doi.org/10.33647/2074-5982-15-2-34-42

Abstract

Genome editing technologies are currently based on the use of one from the three classes of nucleases, i.e. a zinc finger, TAL or CRISPR-Cas. Drawbacks inherent in each of these approaches, though not being critical for animal or in vitro experiments, significantly limit their application in human genome editing. Considerable experience has so far been accumulated in the field of using gene-editing technologies for the treatment and prevention of genetic diseases, transmissible and viral infections. However, further progress is hampered by various technical and ethical problems. It is the task of expert communities and the state that genomic editing methods be smoothly integrated into everyday practices without significant social upheavals.

About the Authors

A. A. Mokhov
Kutafin Moscow State Law University (MSAL)
Russian Federation

Dr. Sci. (Law), Prof.,

123286, Russian Federation, Moscow, Sadovaya-Kudrinskaya str., 9



A. A. Chaplenko
Lomonosov Moscow State University; Scientific Centre for Expert Evaluation of Medicinal Products
Russian Federation

119991, Russian Federation, Moscow, Leninskie gory str., 1, building 3

127051, Russian Federation, Moscow , Petrovsky blvd, 8/2



A. N. Yavorskiy
Pushchino State Institute of Natural Science
Russian Federation

Dr. Sci. (Med.), Prof.,

142290, Russian Federation, Moscow region, Pushchino, Nauki ave., 3



References

1. Youds J.L., Boulton S.J. The choice in meiosis — defining the factors that influence crossover or non-crossover formation. J. Cell Sci. 2011;(124 Pt 4):501–513.

2. Latt S.A. Sister chromatic exchange formation. Annual Rev. Genet. 1981;(15):11–55.

3. Ferguson D., Sekiguchi J., Chang S., et al. The nonhomologous end-joining pathway of DNA repair is required for genomic stability and the suppression of translocations. Proc. Nat. Acad. Sci. USA. 2000;97(12):6630–33.

4. Iliakis G., Wu W., Wang M., et al. Backup pathways of nonhomologous end joining may have a dominant role in the formation of chromosome aberrations. In: Obe G., et al. (eds). Chromosomal Alterations. Berlin: Springer Verlag, 2007. Pp. 67–85.

5. Mills K., Ferguson D., Alt F. The role of DNA breaks in genomic instability and tumorigenesis. Immun. Rev. 2003;(194):77–95.

6. Schwartz M., Zlotorynski E., Goldberg M., et al. Homologous recombination and non-homologous endjoining repair pathways regulate fragile site stability. Genes Dev. 2005;19:2715–26.

7. Choulika A., Perrin A., Dujon B., Nicolas J.F. Induction of homologous recombination in mammalian chromosomes by using the I-SceI system of Saccharomyces cerevisiae. Mol. Cell Biol. 1995;(15):196–73.

8. Plessis A., Perrin A., Haber J.E., Dujon B. Site-specific recombination determined by I-SceI, a mitochondrial group I intron-encoded endonuclease expressed in the yeast nucleus. Genetics. 1992;(130):451–460.

9. Rouet P., Smih F., Jasin M. Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Mol. Cell Biol. 1994;(14):8096–8106.

10. Rudin N., Sugarman E., Haber J.E. Genetic and physical analysis of double-strand break repair and recombination in Saccharomyces cerevisiae. Genetics. 1989;(122):519–534.

11. Chapman J.R., Taylor M.R., Boulton S.J. Playing the end game: DNA double-strand break repair pathway choice. Mol. Cell. 2012;47(4):497–510.

12. Carroll D. Genome Engineering with Targetable Nucleases. Annu Rev. Biochem. 2014;(83):409–439.

13. Nemudryj A.A., Valetdinova K.R., Medvedev S.P., Zakiyan S.M. Sistemy redaktirovaniya genomov TALEN i CRISPR/Cas — instrumenty otkrytij [TALEN and CRISPR /Cas genome editing systems — discovery tools]. ACTA NATURAE. 2014;6(3):20–42. (In Russian).

14. Menzorov A.G., Luk’yanchikovaV.A., Korablev A.N., Serova I.A., Fishman V.S. Prakticheskoe rukovodstvo po redaktirovaniyu genomov sistemoj CRISPR/Cas9 [A practical guide to editing genomes with CRISPR / Cas9]. Vavilovskij zhurnal genetiki i selektsii [J. of Genetics and Vavilov selection]. 2016;20(6):930–944. DOI: 10.18699/VJ16.214. (In Russian).

15. Beumer K.J., Trautman J.K., Bozas A., Liu J.L., Rutter J., Gall J.G., et al. Efficient gene targeting in Drosophila by direct embryo injection with zinc-finger nucleases. Proc Natl Acad Sci USA. 2008;(105):19821–26.

16. Bozas A., Beumer K.J., Trautman J.K., Carroll D. Genetic analysis of zinc-finger nuclease-induced gene targeting in Drosophila. Genetics. Forthcoming. 2009.

17. Chu V.T., Weber T., Wefers B., Wurst W., Sander S., Rajewsky K., et al. Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nat. Biotechnol. 2015;33(5):543–548.

18. Maruyama T., Dougan S.K., Truttmann M.C., Bilate A.M., Ingram J.R., Ploegh H.L. Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat. Biotechnol. 2015;33(5):538–542.

19. Singh P., Schimenti J.C., Bolcun-Filas E. A mouse geneticist’s practical guide to CRISPR applications. Genetics. 2015;199(1):1–15.

20. Richardson C.D., Ray G.J., DeWitt M.A., Curie G.L., Corn J.E. Enhancing homology-directed genome editing by catalytically active and inactive CRISPRCas9 using asymmetric donor DNA. Nat. Biotechnol. 2016;34(3):339–344.

21. Lee K., Mackley V.A., Rao A., Chong A.T., Dewitt M.A., Corn J.E., et al. Synthetically modified guide RNA and donor DNA are a versatile platform for CRISPR-Cas9 engineering. eLife. 2017.

22. Paix A., Folkmann A., Seydoux G. Precision genome editing using CRISPR-Cas9 and linear repair templates in C. elegans. Methods. 2017.

23. Sakuma T., Nakade S., Sakane Y., Suzuki K.T., Yamamoto T. MMEJ-assisted gene knock-in using TALENs and CRISPR-Cas9 with the PITCh systems. Nat. Protoc. 2016;11(1):118–133.

24. Karkischenko N.N., Ryabykh V.P., Koloskova E.M., Karkischenko V.N. Sozdanie gumanizirovannykh myshej dlya farmakotoksikologicheskikh issledovanij (uspekhi, neudachi i perspektivy) [Creation of humanized mice for pharmacotoxicological studies (successes, failures and prospects)]. Biomedicine. 2014;(3):4–22. (In Russian).

25. Tycko J., Myer V.E., Hsu P.D. Methods for Optimizing CRISPR-Cas9 Genome Editing Specificity. Mol. Cell. 2016;63(3):355–370.

26. Chin J.Y., Glazer P.M. Repair of DNA lesions associated with triplex-forming oligonucleotides. Mol. Carcinog. 2009;(48):389–399.

27. Kim K.H., Nielsen P.E., Glazer P.M. Site-specific gene modification by PNAs conjugated to psoralen. Biochemistry. 2006;(45):314–323.

28. Doss R.M., Marques M.A., Foister S., Chenoweth D.M., Dervan P.B. Programmable oligomers for minor groove DNA recognition. J. Am. Chem. Soc. 2006;(128):9074–79.

29. Hess G.T., Fresard L., Han K., Lee C.H., Li A., Cimprich K.A., et al. Directed evolution using dCas9-targeted somatic hypermutation in mammalian cells. Nat. Methods. 2016;13(12):1036–42.

30. Komor A.C., Kim Y.B., Packer M.S., Zuris J.A., Liu D.R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature. 2016;533(7603):420–424.

31. Ma Y., Zhang J., Yin W., Zhang Z., Song Y., Chang X. Targeted AID-mediated mutagenesis (TAM) enables efficient genomic diversification in mammalian cells. Nat. Methods. 2016;13(12):1029–35.

32. Nishida K., Arazoe T., Yachie N., Banno S., Kakimoto M., Tabata M., et al. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science. 2016;(353):6305.

33. Tebas P., Stein D., Tang W.W., Frank I., Wang S.Q., Lee G., et al. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N. Engl. J. Med. 2014;370(10);901–910.

34. Menger L., Sledzinska A., Bergerhoff K., Vargas F.A., Smith J., Poirot L., et al. TALEN-Mediated Inactivation of PD-1 in Tumor-Reactive Lymphocytes Promotes Intratumoral T-cell Persistence and Rejection of Established Tumors. Cancer Res. 2016;76(8):2087–93.

35. Cyranoski D. Chinese scientists to pioneer first human CRISPR trial. Nature. 2016;(535);476–477.

36. Kaiser J. First proposed human test of CRISPR passes initial safety review. Science. 2016.

37. Ryabykh V.P., Koloskova E.M., Ezerskij V.A., Trubitsina T.P., Maksimenko S.V. O perspektivakh polucheniya transgennyh myshej-biomodelej dlya farmakologicheskikh i toksikologicheskikh

38. issledovanij [On the prospects for obtaining transgenic biomodel mice for pharmacological and toxicological studies]. Problemy biologii produktivnykh zhivotnykh [Problems of biology of productive animals]. 2015;2:5–22. (In Russian).

39. Karkischenko V.N., Ryabykh V.P., Karkischenko N.N., Dulya M.S., Ezerskiy V.A., Koloskova E.M., Lazarev V.N., Maksimenko S.V., Petrova N.V., Stolyarova V.N., Trubitsina T.P. Molekulyarno-

40. geneticheskie aspekty tekhnologii polucheniya transgennykh myshej s integrirovannymi genami N-acetiltransferazy (NAT1 i NAT2) cheloveka [Molecular and genetic aspects of technology for producing transgenic mice with integrated N-acetyltransferase genes (NAT1 and NAT2) in humans]. Biomedicine. 2016;(1):4–18. (In Russian).

41. Karkischenko V.N., Ryabykh V.P., Bolotskikh L.A., Semenov Kh.Kh., Kapanadze G.D., Petrova N.V., Ezerskiy V.A., Zhukova O.B., Koloskova E.M., Maksimenko S.V., Stolyarova V.N., Trubitsina T.P. Fiziologo-embriologicheskie aspekty sozdaniya transgennyh myshej s integrirovannymi genami NAT1 i NAT2 cheloveka [Physiological and embryological aspects of creating transgenic mice with integrated human NAT1 and NAT2 genes]. Biomedicine. 2016;(1):52–66. (In Russian).

42. Karkischenko V.N., Bolotskikh L.A., Kapanadze G.D., Karkischenko N.N., Koloskova E.M., Maksimenko S.V., Matveyenko E.L., Petrova N.V., Ryabykh V.P., Revyakin A.O., Stankova N.V., Semenov Kh.Kh. Sozdanie linij transgennykh zhivotnykh-modelej s genami cheloveka NAT1 i NAT2 [Creating lines of transgenic animal models with human genes NAT1 and NAT2]. Biomedicine. 2016;(1):74–85. (In Russian).

43. Ryabykh V.P., Trubitsina T.P., Maksimenko S.V., Zhukova O.B., Stolyarova V.N., Ezerskij V.A., Koloskova E.M. Fiziologo-embriologicheskie aspekty biotekhnologii polucheniya transgennykh myshej metodom mikroin”ekcii genno-inzhenernykh konstruktsij v pronukleusy zigot [Physiological and embryological aspects of biotechnology for producing transgenic mice by microinjection of genetically engineered structures into zygote pronuclei]. Problemy biologii produktivnykh zhivotnykh [Problems of biology of productive animals]. 2016;(2):5–21. (In Russian).

44. Committee on Human Gene Editing Scientific, Medical, and Ethical Considerations. Human Genome Editing: Science, Ethics, and Governance. Washington (DC): The National Academies Press, 2017.

45. Kohn D.B., Porteus M.H., Scharenberg A.M. Ethical and regulatory aspects of genome editing. Blood. 2016;127(21):2553–60.

46. Gantz V.M., Bier E. The dawn of active genetics. BioEssays. 2016;38(1):50–63.

47. Hammond A., Galizi R., Kyrou K., Simoni A., Siniscalchi C., Katsanos D., et al. A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae. Nat. Biotechnol. 2016;34(1):78–83.

48. Gantz V.M., Jasinskiene N., Tatarenkova O., Fazekas A., Macias V.M., Bier E., et al. Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi. Proc. Natl Acad. Sci. USA. 2015;112(49):6736–43.

49. Akbari O.S., Bellen H.J., Bier E., Bullock S.L., Burt A., Church G.M., et al. BIOSAFETY. Safeguarding gene drive experiments in the laboratory. Science. 2015;349(6251):927–929.

50. Esvelt K.M., Smidler A.L., Catteruccia F., Church G.M. Concerning RNA-guided gene drives for the alteration of wildpopulations. eLife. 2014.

51. Ma H., Marti-Gutierrez N., Park S.W., Wu J., Lee Y., Suzuki K., et al. Correction of a pathogenic gene mutation in human embryos. Nature. 2017;(548):413–419.


Review

For citations:


Mokhov A.A., Chaplenko A.A., Yavorskiy A.N. USE OF GENOME EDITING TECHNOLOGIES: ACHIEVEMENTS AND FURURE PROSPECTS. Journal Biomed. 2019;(2):34-42. (In Russ.) https://doi.org/10.33647/2074-5982-15-2-34-42

Views: 1214


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2074-5982 (Print)
ISSN 2713-0428 (Online)