Preview

Journal Biomed

Advanced search

Technological Aspects of Obtaining Liposomes Containing of a Complex of Biologically Active Substances Isolated from Deer Musk

https://doi.org/10.33647/2074-5982-17-4-18-37

Abstract

In order to preserve and increase the biological effectiveness of biologically active substances isolated from deer musk, we studied technological aspects of obtaining a substance of lipid-stabilized stable nanoparticles from deer musk. The stability of the obtained substance was evaluated. It was found that homogenization under high pressure is an optimal approach to obtaining biologically active substances from deer musk. The modes of preparation of a liposomal form of biologically active substances with predetermined dispersion parameters (average particle diameter 250 ± 100 nm, polydispersity index 0.3 ± 0.1, and zeta potential from -5 to -35 mV) were determined. It was found that the high-pressure homogenizer “Donor-5” makes it possible to obtain liposomal dispersions with standard parameters and the degree of inclusion of musk biologically active substances up to 60%, at the same time as providing minimal oxidation and hydrolysis of phospholipids (oxidation index 0.3). Our studies showed that the use of a domestic phosphatidylcholine is economically justified and allows obtaining liposomal forms of proper quality. The quality indicators of the obtained liposomal substance were characterised by conventional analytical methods (dynamic light scattering, electron microscopy, gel chromatography, chromatography-mass spectrometry, etc.). On the basis of the results obtained, a draft specification was developed for a liposomal substance (powder) containing a complex of biologically active substances isolated from deer musk. The developed technology for obtaining a liposomal form of biologically active substances from deer musk can be scaled up in accordance with GMP requirements.

About the Authors

S. L. Lyublinskiy
Scientific Center of Biomedical Technologies of the Federal Medical and Biological Agency of Russia
Russian Federation

Stanislav L. Lyublinskiy, Cand. Sci. (Biol.)

143442, Moscow Region, Krasnogorsk District, Svetlye Gory Village, 1



I. N. Lyublinskaya
Scientific and Production Company “MOBITEK-M”
Russian Federation

Irina N. Lyublinskaya

249010, Kaluga Region, Borovsk, Institute Village, 6



E. M. Koloskova
Scientific and Production Company “MOBITEK-M”
Russian Federation

Elena M. Koloskova, Cand. Sci. (Biol.)

249010, Kaluga Region, Borovsk, Institute Village, 6



A. M. Azizov
Scientific and Production Company “MOBITEK-M”
Russian Federation

Arif M. Azizov

249010, Kaluga Region, Borovsk, Institute Village, 6



V. N. Karkischenko
Scientific and Production Company “MOBITEK-M”
Russian Federation

Vladislav N. Karkischenko, Dr. Sci. (Med.), Prof.

249010, Kaluga Region, Borovsk, Institute Village, 6



M. S. Nesterov
Scientific Center of Biomedical Technologies of the Federal Medical and Biological Agency of Russia
Russian Federation

Maksim S. Nesterov

143442, Moscow Region, Krasnogorsk District, Svetlye Gory Village, 1



A. V. Kaptsov
Scientific Center of Biomedical Technologies of the Federal Medical and Biological Agency of Russia
Russian Federation

Alexander V. Kaptsov

143442, Moscow Region, Krasnogorsk District, Svetlye Gory Village, 1



R. A. Ageldinov
Scientific Center of Biomedical Technologies of the Federal Medical and Biological Agency of Russia
Russian Federation

Ruslan A. Ageldinov

143442, Moscow Region, Krasnogorsk District, Svetlye Gory Village, 1



V. N. Gerasimov
State Research Center for Applied Microbiology and Biotechnology
Russian Federation

Vladimir N. Gerasimov, Dr. Sci. (Biol.)

142279, Moscow Region, Serpukhov District, Obolensk Settlement



D. V. Grinenko
State Research Center for Applied Microbiology and Biotechnology
Russian Federation

Dmitrii V. Grinenko

142279, Moscow Region, Serpukhov District, Obolensk Settlement



References

1. Ballyuzek F.K., Kurkayev A.S., Sente L. Nanotekhnologii dlya meditsiny [Nanotechnology for medicine]. Saint-Petersburg: Sesam-Print Publ., 2018:104. (In Russian).

2. Borshchevskiy G.I. Opredeleniye indeksa okislennosti liposomal’nykh nanochastits [Determination of the oxidation index of liposomal nanoparticles]. Khimiya i khimicheskiye tekhnologii [Chemistry and chemical technologies]. 2015;9:25–26. (In Russian).

3. Borshchevs’kiy G.I., Komarov I.V., Kulinich A.V. Faktory, yaki vplyvayut’ na stabil’nist‘ preparatu Lesfal’ [Factors affecting the stability of the drug Lesfal]. Upravlinnya, ekonomika ta zabezpechennya yakosti v farmatsiyi [Management, economics and quality assurance in pharmacy journal]. 2013;6:10–14. (In Ukrainian).

4. Bykovskiy S.N., Vasilenko I.A., Demina N.B., Shokhin I.Ye., Novozhilov O.V., Meshkovskiy A.P., Spitskiy O.R. Farmatsevticheskaya razrabotka: kontseptsiya i prakticheskiye rekomendatsii. Nauchno-prakt. ruk-vo dlya farmatsevticheskoy otrasli [Pharmaceutical Development: Concept and Practical Guidelines. Scientific and practical guide for the pharmaceutical industry]. Moscow: Pero Publ., 2015:472. (In Russian).

5. Gregoriadis G., Allison A. Liposomy v biologicheskikh sistemakh [Liposomes in biological systems]. Moscow: Medicine Publ., 1983:384. (In Russian).

6. Zefirov N.S., Knunyants I.L., Kulov N.N. Khimicheskaya entsiklopediya [Chemical encyclopedia] . Moscow: Soviet encyclopedia Publ., 1990:80–82. (In Russian).

7. Kaptsov V.V., Alymov A.V., Shibayev N.V., Kukushkin V.I., Mayevskiy Ye.I. Vybor sposobov i ustroystv dispergirovaniya dlya prigotovleniya gazoperenosyashchikh emul’siy PFS [The choice of methods and devices for dispersing for the preparation of gas-transfer emulsions PFC]. VINITI [VINITI J.]. 1984;148. (In Russian).

8. Karkischenko V.N., Dulya M.S., Ageldinov R.A., Lyublinskiy S.L., Karkischenko N.N. Liposomirovannaya forma ekstrakta preputsial’noy zhelezy kabargi — novoye sredstvo adaptogennogo deystviya [A liposomal composition of musk deer preputial gland extract as a new agent of adaptogenic]. Biomeditsina [Journal Biomed]. 2019;15(4):34–45. (In Russian).

9. Karkischenko V.N., Dulya M.S., Khvostov D.V., Ageldinov R.A., Lyublinskiy S.L. Analiz biologicheski aktivnykh soyedineniy muskusa kabargi Moschus Moschiferus metodom gazovoy khromatografii s mass-selektivnym detektorom [Analysis of biologically active musk compounds of musk deer (Moschus Moschiferus) by gas chromatography with mass selective detector]. Biomeditsina [Journal Biomed]. 2018;1:34–45. (In Russian).

10. Karkischenko V.N., Dulya M.S., Khvostov D.V., Ageldinov R.A., Lyublinskiy S.L. Proteomnyy analiz v identifikatsii belkovykh komponentov preputsial’noy zhelezy kabargi sibirskoy [Proteomic analysis in the identification of active components in the preputial gland secretion of the Siberian musk deer]. Biomeditsina [Journal Biomed]. 2019;15(1):34–45. (In Russian).

11. Karkischenko V.N., Karkischenko N.N., Shustov E.B. Farmakologicheskie osnovy terapii [The pharmacological therapeutics basis]. Thesaurus. Ed. 3th — new ed. Moscow, Saint-Petersburg: Ajsing Publ., 2018:288. (In Russian).

12. Krasnopol’skiy Yu.M., Dudnichenko A.S., Shvets V.I. Farmatsevticheskaya biotekhnologiya: bionanotekhnologiya v farmatsii i meditsine [Pharmaceutical biotechnology: bionanotechnology in pharmacy and medicine]. Kharkov: Publishing Center NTU “KhPI”, 2011:227. (In Russian).

13. Krasnopol’skiy Yu.M., Stepanov A.Ye., Shvets V.I. Tekhnololgicheskiye aspekty polucheniya liposomal’nykh preparatov v usloviyakh GMP [Technological aspects of obtaining liposomal preparations under GMP conditions]. Biopharmaceutical journal. 2009;1(3):18–29. (In Russian).

14. Kuzyakova L.M., Yefremenko V.I. Medikamentoznoye preodoleniye anatomicheskikh i kletochnykh bar’yerov s pomoshch’yu liposom [Drug overcoming of anatomical and cellular barriers using liposomes]. Stavropol: B.I., 2000:169. (In Russian).

15. Poste Dzh. Vzaimodeystviye lipidnykh vezikul (liposom) s kletkami v kul’ture i ikh ispol’zovaniye kak perenoschikov lekarstv i makromolekul [Interaction of lipid vesicles (liposomes) with cells in culture and their use as carriers of drugs and macromolecules]. V kn.: Liposomy v biologicheskikh sistemakh [In the book: Liposomes in biological systems]. Moscow: Medicine Publ., 1988:107–155. (In Russian).

16. Ringsdorf G., Shmidt B. Sistemy polimernykh nositeley lekarstv [Systems of polymer carriers of drugs]. Zhurnal vsesoyuznogo khimicheskogo obshchestva im. D.I. Mendeleyeva [Journal of the All-Union Chemical Society named after D.I. Mendeleev]. 1987;32(5):487–501. (In Russian).

17. Seyfulla R.D. Farmakologiya liposomal’nykh preparatov [Pharmacology of liposomal preparations]. Moscow: Globus Continental Publ., 2010:241. (In Russian).

18. Uyba V.V., Kotenko K.V., Korzhachkina N.B., Petrova N.B., Mikhaylova A.A. Primeneniye muskusa kabargi v klinicheskoy praktike [Application of musk of musk deer in clinical practice]. Methodical recommendations. Moscow, 2013:18. (In Russian).

19. Chazov Ye.I., Smirnov V.N., Torchilin V.P. Liposomy kak sredstvo napravlennogo transporta lekarstv [Liposomes as a Means of Directed Transport of Drugs]. Zhurnal vsesoyuznogo khimicheskogo obshchestva im. D.I. Mendeleyeva [Journal of the All-Union Chemical Society named after D.I. Mendeleev]. 1987;32(5):502–513. (In Russian).

20. Shvets V.I., Krasnopol’skiy Yu.M., Sorokoumova G.M. Liposomal’nyye formy lekarstvennykh preparatov: tekhnologicheskiye osobennosti polucheniya i primeneniya v klinike [Liposomal forms of drugs: technological features of production and use in the clinic]. Moscow: Remedium Publ., 2017:197. (In Russian).

21. Kaptsov V.V. Production PPG submicron emulsions and liposomes with high pressure homogenizer. “Donor-1”. Artificial cells, blood substitutes, and biotechnology, 1994;22(5):110.

22. Kaszuba M., McKnight D., Connah M.T., McNeil-Watson F.K., Nobbmann U. Measuring sub nanometer sizes using dynamic light scattering. J. of Nanoparticle Research, 2008;10:823–829.

23. Mahmud M., Piwoni A., Filipczak N., Janicka M., Gubernator J. Long-Circulating Curcumin-Loaded Liposome Formulations with High Incorporation Efficiency, Stability and Anticancer Activity towards Pancreatic Adenocarcinoma Cell Lines in vitro. PLoS One. 2016;11(12):e0167787.

24. Rejman J., Oberle V., Zuhom I.S., Hoekstra D. Size-dependent internalization of particles via the pathways of clatrin and caveolae-mediated endocytosis. Biochem. Journal, 2004;377(1):159–169.

25. Tohver V., Smay J.E., Braem A., Braun P.V., Lewis J.A. Nanoparticle halos: A new colloid stabilization mechanism. Proceedings of the National Academy of Sciences, 2001;98(16):8950–8954.

26. https://bio.pnpi.nrcki.ru/wp-content/uploads/2020/01/Photocor-Compact-Z_Manual.pdf

27. https://www.malvernpanalytical.com/ru/products/measurement-type/zeta-potential


Review

For citations:


Lyublinskiy S.L., Lyublinskaya I.N., Koloskova E.M., Azizov A.M., Karkischenko V.N., Nesterov M.S., Kaptsov A.V., Ageldinov R.A., Gerasimov V.N., Grinenko D.V. Technological Aspects of Obtaining Liposomes Containing of a Complex of Biologically Active Substances Isolated from Deer Musk. Journal Biomed. 2021;17(4):18-37. (In Russ.) https://doi.org/10.33647/2074-5982-17-4-18-37

Views: 474


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2074-5982 (Print)
ISSN 2713-0428 (Online)