METHODS FOR ESTIMATING NEUROLOGICAL DISTURBANCES IN EXPERIMENTAL CEREBRAL ISCHEMIA
https://doi.org/10.33647/2074-5982-15-2-69-74
Abstract
Investigation of the brain pathology in experimental ischemia requires adequate methods for assessing the neurological deficit that occurs in laboratory animals, including sensory-based and behavioural disorders. In this research, we aimed to compare motor and behavioural disorders in rats with partial and subtotal experimental cerebral ischemia. The rats modelled with cerebral ischemia are found to exhibit a decrease in muscle strength, resistance to hypoxia, motor and emotional activity. The animals with incomplete cerebral ischemia demonstrated more pronounced sensory-based motor and behavioural disorders compared both with those modelled with partial cerebral ischemia and, in particular, with the control group.
About the Authors
E. I. BonBelarus
Cand. Sci. (Biol.),
230009, Republic of Belarus, Grodno, Gorkogo str., 80
N. Ye. Maksimovich
Belarus
Dr. Sci. (Med.), Prof.,
230009, Republic of Belarus, Grodno, Gorkogo str., 80
References
1. Chan P.H. Mitochondria and neuronal death/survival signaling pathways in cerebral ischemia. Neurochem. Res. 2004;29:1943–49.
2. Batin N.V. Komputornii statisticheskii analiz dannich: uch.-metod. posob. [Computer statistical analysis of data]. Minsk: In-t podgot. nauch. kadrov NAN Belarusi [Institute for the training of scientific personnel Belarus NSA], 2008. 160 p. (In Russian).
3. Chen H., Sun D. The role of Na-K-Cl co-transporter in cerebral ischemia. Neurol. Res. 2005;27:280–286.
4. Bon L.I., Maksimovich N.Ye., Zimatkin S.M. Morfofunktsional’nyye narusheniya v gippokampe krys posle subtotal’noy ishemii [Morphofunctional disorders in the hippocampus of rats after subtotal ischemia]. Vestnik Smolenskoy gosudarstvennoy meditsinskoy akademii [Bulletin of Smolensk State Medical Academy]. 2018; 17(1):24–29. (In Russian).
5. Cinque S., Zoratto F., Poleggi A., Leo D., Cerniglia L., Cimino S., Tambelli R., Alleva E., Gainetdinov R., Laviola G., Adriani W. Behavioral Phenotyping of Dopamine Transporter Knockout Rats: Compulsive Traits, Motor Stereotypies, and Anhedonia. Front Psychiatry. 2018;22:9–43.
6. Buresh Ya., Bureshova O., Houston D.P. Metodiki i osnovnyye eksperimenty po izucheniyu mozga i povedeniya [Techniques and basic experiments on the study of the brain and behavior]. Moscow: Vysshaya shkola Publ., 1991. 332 p. (In Russian).
7. Ehman K.D., Moser V.C. Evaluation of cognitive function in weanling rats: a review of methods suitable for chemical screening. Neurotoxicol. Teratol. 2006;28:144–161.
8. Butin A.A. Zakonomernosti izmeneniy sosudisto-kapillyarnoy seti kory bol’shogo mozga v otvet na ostruyu tserebral’nuyu ishemiyu [Patterns of changes in the cerebrovascular capillary network of the cerebral cortex in response to acute cerebral ischemia]. Omskiy nauchnyy vestnik [Omsk Scientific Herald]. 2004;26:46–57. (In Russian).
9. European Convention for the protection of vertebrate animals used for experimental and other scientific purposes. ETS N 123. Strasbourg, 1986. Pp. 34–42.
10. Dayneko A.S., Shmonin A.A., Shumeyeva A.V., Kovalenko Ye.A., Mel’nikova Ye.V., Vlasov T.D. Metody otsenki nevrologicheskogo defitsita u krys posle 30-minutnoy fokal’noy ishemii mozga na rannikh i pozdnikh srokakh postishemicheskogo perioda [Methods for assessing neurologic deficits in rats after a 30-minute focal cerebral ischemia in the early and late stages of the postischemic period]. Regionarnoye krovoobrashcheniye i mikrotsirkulyatsiya [Regional blood circulation and microcirculation]. 2014:(1):68–78. (In Russian).
11. Fashing P.J., Nguyen N. Behavior toward the dying, diseased, or disabled among animals and its relevance to paleopathology. Int. J. Paleopathol. 2011;1:128–129.
12. Zakharov V.V., Yakhno N.N. Kognitivnyye rasstroystva v pozhilom i starcheskom vozraste: Metod. posob. dlya vrachey [Cognitive disorders in the elderly and senile age: A manual for doctors]. Moscow, 2005. 71 p. (In Russian).
13. Hall C.S. Emotional behavior in the rat. III. The relationship between emotionality and ambulatory activity. J. Comp. Physiol Psychol. 1936;22:345–352.
14. Zorina Z.A., Poletayeva I.I. Zoopsikhologiya. Elementarnoye myshleniye zhivotnykh [Zoopsychology. Elementary thinking of animals]. Moscow: “Aspekt Press” Publ., 2001. 320 p. (In Russian).
15. Hattori K., Lee H., Hum P., Fahrig A. Cognitive deficits after focal cerebral ischemia in mice. Stroke. 2000;31:1939–44.
16. Romanova G.A. Dizregulyatsionnyye narusheniya integrativnoy deyatel’nosti mozga pri fokal’noy ishemii kory [Disregulatory disorders of brain integrative activity in focal coronary ischemia]. Dizregulyatsionnaya patologiya [Disregulation pathology]. Moscow: “Medicina” Publ., 2002. Pp. 605–615. (In Russian).
17. Prickaerts J., Fahrig A., Blokland T. Cognitive performance and biochemical markers in septum hippocampus and striatum of rats after an i.c.v. injection of streptozotocin: a correlation analysis. Behav. Brain Res. 1999;102:73–88.
18. Romanova G.A., Shakova F.M., Gudasheva T.A., Ostrovskaya R.U. Narusheniya obucheniya i pamyati, vyzvannyye fototrombozom prefrontal’noy kory golovnogo mozga krys: effekty noopepta [Disturbances in learning and memory caused by photothrombosis of the prefrontal cerebral cortex of rats: effects of noopept]. Bulletin of experimental biology and medicine. 2002;(134):614–616. (In Russian).
19. Rosińczuk J., Dymarek R., Całkosiński I. The protective action of tocopherol and acetylsalicylic acid on the behavior of rats treated with dioxins. Adv. Clin. Exp. Med. 2018;27:5–14.
20. Sufianova G.Z. Usov L.A., Sufianov A.A., Shapkin A.G., Rayevskaya L.Yu., Golubev S.S., Murik S.E. Maloinvazivnaya model’ fokal’noy ishemii golovnogo mozga u krys [A low-invasive model of focal cerebral ischemia in rats]. Experimental and Clinical Pharmacology. 2001;(64):63–67. (In Russian).
21. Satrom K., Ennis K., Sweis B. Matveeva T., Chen J., Hanson L., Maheshwari A., Rao R. Neonatal hyperglycemia induces CXCL10/CXCR3 signaling and microglial activation and impairs long-term synaptogenesis in the hippocampus and alters behavior in rats. J. Neuroinflammation. 2018;15:78–82.
22. Bederson J. Rat middle cerebral artery occlusion Evaluation of the model and development of a neurological examination. Stroke. 1986;17:472–476.
23. Schaar K. Functional assessments in the rodent stroke model. Eperimental & Translational Stroke Medicine. 2010;2:13–18.
24. Chan P.H. Mitochondria and neuronal death/survival signaling pathways in cerebral ischemia. Neurochem. Res. 2004;29:1943–49.
25. Schallert T., Upchurch M., Lobaugh N., Woodlee M.T. Tactile extinction: distinguishing between sensorimotor and motor asymmetries in rats with unilateral nigrostriatal damage. Pharmacology Biochemistry & Behavior. 1982;16:455–462.
26. Chen H., Sun D. The role of Na-K-Cl co-transporter in cerebral ischemia. Neurol. Res. 2005;27:280–286.
27. Schallert T., Woodlee M.T. Orienting and placing. In the Behavior of the Laboratory Rat: A Handbook with Tests. Oxford: Oxford University Press, 2005. Pp. 129–140.
28. Cinque S., Zoratto F., Poleggi A., Leo D., Cerniglia L., Cimino S., Tambelli R., Alleva E., Gainetdinov R., Laviola G., Adriani W. Behavioral Phenotyping of Dopamine Transporter Knockout Rats: Compulsive Traits, Motor Stereotypies, and Anhedonia. Front Psychiatry. 2018;22:9–43.
29. Sestakova N., Puzserova A., Kluknavsky M., Bernatova I. Determination of motor activity and anxiety-related behaviour in rodents: methodological aspects and role of nitric oxide. Interdisciplinary Toxicology. 2013;6:126–135.
30. Ehman K.D., Moser V.C. Evaluation of cognitive function in weanling rats: a review of methods suitable for chemical screening. Neurotoxicol. Teratol. 2006;28:144–161.
31. Tilson H.A., Mitchell C.L. Neurobehavioral techniques to assess the effects of chemicals on the nervous system. Ann. Rev. Pharmacol. Toxicol. 1984;24:425–450.
32. European Convention for the protection of vertebrate animals used for experimental and other scientific purposes. ETS N 123. Strasbourg, 1986. Pp. 34–42.
33. Vorhees C.V. Methods for detecting long-term CNS dysfunction after prenatal exposure to neurotoxins. Drug Chem. Toxicol. 1997;20:387–399.
34. Fashing P.J., Nguyen N. Behavior toward the dying, diseased, or disabled among animals and its relevance to paleopathology. Int. J. Paleopathol. 2011;1:128–129.
35. Hall C.S. Emotional behavior in the rat. III. The relationship between emotionality and ambulatory activity. J. Comp. Physiol Psychol. 1936;22:345–352.
36. Hattori K., Lee H., Hum P., Fahrig A. Cognitive deficits after focal cerebral ischemia in mice. Stroke. 2000;31:1939–44.
37. Prickaerts J., Fahrig A., Blokland T. Cognitive performance and biochemical markers in septum hippocampus and striatum of rats after an i.c.v. injection of streptozotocin: a correlation analysis. Behav. Brain Res. 1999;102:73–88.
38. Rosińczuk J., Dymarek R., Całkosiński I. The protective action of tocopherol and acetylsalicylic acid on the behavior of rats treated with dioxins. Adv. Clin. Exp. Med. 2018;27:5–14.
39. Satrom K., Ennis K., Sweis B. Matveeva T., Chen J., Hanson L., Maheshwari A., Rao R. Neonatal hyperglycemia induces CXCL10/CXCR3 signaling and microglial activation and impairs long-term synaptogenesis in the hippocampus and alters behavior in rats. J. Neuroinflammation. 2018;15:78–82.
40. Schaar K. Functional assessments in the rodent stroke model. Eperimental & Translational Stroke Medicine. 2010;2:13–18.
41. Schallert T., Upchurch M., Lobaugh N., Woodlee M.T. Tactile extinction: distinguishing between sensorimotor and motor asymmetries in rats with unilateral nigrostriatal damage. Pharmacology Biochemistry & Behavior. 1982;16:455–462.
42. Schallert T., Woodlee M.T. Orienting and placing. In the Behavior of the Laboratory Rat: A Handbook with Tests. Oxford: Oxford University Press, 2005. Pp. 129–140.
43. Sestakova N., Puzserova A., Kluknavsky M., Bernatova I. Determination of motor activity and anxiety-related behaviour in rodents: methodological aspects and role of nitric oxide. Interdisciplinary Toxicology. 2013;6:126–135.
44. Tilson H.A., Mitchell C.L. Neurobehavioral techniques to assess the effects of chemicals on the nervous system. Ann. Rev. Pharmacol. Toxicol. 1984;24:425–450.
45. Vorhees C.V. Methods for detecting long-term CNS dysfunction after prenatal exposure to neurotoxins. Drug Chem. Toxicol. 1997;20:387–399.
Review
For citations:
Bon E.I., Maksimovich N.Ye. METHODS FOR ESTIMATING NEUROLOGICAL DISTURBANCES IN EXPERIMENTAL CEREBRAL ISCHEMIA. Journal Biomed. 2019;(2):69-74. https://doi.org/10.33647/2074-5982-15-2-69-74