Preview

Journal Biomed

Advanced search

Comparative Study of Injectable Implants Based on Microparticles of Various Biodegradable Materials in a Murine Model of Subcutaneous Implantation

https://doi.org/10.33647/2074-5982-18-2-63-76

Abstract

A comparative study of two commercially available injectable implants based on microparticles of various biodegradable materials (calcium hydroxyapatite and cross-linked collagen) was carried out using a murine model of subcutaneous implantation. The developed experimental model showed that both implants effectively replace the volume of soft tissues. Implant resorption was accompanied by a moderate chronic inflammatory response. The implant based on calcium hydroxyapatite microparticles caused pronounced post-injection swelling at 1 day after administration and demonstrated a more pronounced migration from the injection point. For this implant, an earlier onset of the process of replacing microparticles with autologous collagen fibers, accompanying its biodegradation, was observed. The implant based on cross-linked collagen microparticles had a greater lifting effect at the injection site and retained a longer effect of skin augmentation lasting for 12 months.

About the Authors

I. A. Demyanenko
National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya of the Ministry of Health Care of Russia
Russian Federation

 Cand. Sci. (Biol.) 

123098, Russian Federation, Moscow, Gamaleya Str., 18



A. V. Shishkina
National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya of the Ministry of Health Care of Russia
Russian Federation

 Cand. Sci. (Biol.) 

 123098, Russian Federation, Moscow, Gamaleya Str., 18 



Yu. S. Hats
National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya of the Ministry of Health Care of Russia
Russian Federation

 123098, Russian Federation, Moscow, Gamaleya Str., 18 



N. V. Kalmykova
National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya of the Ministry of Health Care of Russia
Russian Federation

 Cand. Sci. (Biol.) 

 123098, Russian Federation, Moscow, Gamaleya Str., 18 



References

1. Abuaf O.K., Yildiz H., Baloglu H, Bilgili M.E., Simsek H.A., Dogan B. Histologic evidence of new collagen formulation using platelet rich plasma in skin rejuvenation: A prospective controlled clinical study. Ann. Dermatol. 2016;28(6):718–724. DOI: 10.5021/ad.2016.28.6.718.

2. Ballin A.C., Brandt F.S., Cazzaniga A. Dermal fillers: An update. Am. J. Clin. Dermatol. 2015;16(4):271–283. DOI: 10.1007/s40257-015-0135-7.

3. Berlin A.L., Hussain M., Goldberg D.J. Calcium hydroxylapatite filler for facial rejuvenation: A histologic and immunohistochemical analysis. Dermatol. Surg. 2008;34 Suppl 1:S64–S67. DOI: 10.1111/j.1524-4725.2008.34245.x.

4. Breithaupt A., Fitzgerald R. Collagen stimulators: Poly-l-lactic acid and calcium hydroxyl apatite. Facial. Plast. Surg. Clin. North. Am. 2015;23(4):459–469. DOI: 10.1016/j.fsc.2015.07.007.

5. Broggini N., McManus L.M., Hermann J.S., Medina R., Schenk R.K., Buser D., Cochran D.L. Peri-implant inflammation defined by the implant-abutment interface. J. Dent. Res. 2006;85(5):473–478. DOI: 10.1177/154405910608500515.

6. Chen H., Agrawal D.K., Thankam F.G. Biomaterialsdriven sterile inflammation. Tissue Eng. Part B Rev. 2022;28(1):22–34. DOI: 10.1089/ten.TEB.2020.0253.

7. Cheng L., Sun X., Tang M., Jin R., Cui W., Zhang Y. An update review on recent skin fillers. Plast. Aesthet. Res. 2016;3:92–99. DOI: 10.20517/2347-9264.2015.124.

8. de Melo F., Nicolau P., Piovano L., Lin S., BaptistaFernandes T., King M., Camporese A., Hong K., Khattar M.M., Christen M. Recommendations for volume augmentation and rejuvenation of the face and hands with the new generation polycaprolactone-based collagen stimulator (Ellansé ®). Clin. Cosmet. Investig. Dermatol. 2017;10:431–440. DOI: 10.2147/CCID.S145195.

9. Eppley B., Dadvand B. Injectable soft-tissue fillers: Clinical overview. Plast. Reconstr. Surg. 2006;118(4):E98–E106. DOI: 10.1097/01.prs.0000232436.91409.30.

10. Fereidoni M., Ahmadiani A., Semnanian S., Javan M. An accurate and simple method for measurement of paw edema. J. Pharmacol. Toxicol. Methods. 2000;43(1):11–14. DOI: 10.1016/s1056-8719(00)00089-7.

11. Gold M.H. Use of hyaluronic acid fillers for the treatment of the aging face. Clin. Interv. Aging. 2007;2(3):369–376. DOI: 10.2147/cia.s1244.

12. Hee C.K., Shumate G.T., Narurkar V., Bernardin A., Messina D.J. Rheological properties and in vivo performance characteristics of soft tissue fillers. Dermatol. Surg. 2015;41 Suppl 1:S373–S381. DOI: 10.1097/DSS.0000000000000536.

13. Holzapfel A.M., Mangat D.S., Barron D.S. Softtissue augmentation with calcium hydroxylapatite: Histological analysis. Arch. Facial Plast. Surg. 2008;10(5):335–338. DOI: 10.1001/archfaci.10.5.335.

14. Jhunjhunwala S., Aresta-DaSilva S., Tang K., Alvarez D., Webber M.J., Tang B.C., Lavin D.M., Veiseh O., Doloff J.C., Bose S., Vegas A., Ma M., Sahay G., Chiu A., Bader A., Langan E., Siebert S., Li J., Greiner D.L., Newburger P.E., von Andrian U.H., Langer R., Anderson D.G. Neutrophil responses to sterile implant materials. PLoS One. 2015;10(9):e0137550. DOI: 10.1371/journal.pone.0137550.

15. Kadouch J.A. Calcium hydroxylapatite: A review on safety and complications. J. Cosmet. Dermatol. 2017;16(2):152–161. DOI: 10.1111/jocd.12326.

16. Lemperle G., Morhenn V., Charrier U. Human histology and persistence of various injectable filler substances for soft tissue augmentation. Aesthetic Plast. Surg. 2003;27(5):354–366. DOI: 10.1007/s00266-003-3022-1.

17. Lucke S., Walschus U., Hoene A., Schnabelrauch M., Nebe J.B., Finke B., Schlosser M. The in vivo inflammatory and foreign body giant cell response against different poly(l-lactide-co-d/l-lactide) implants is primarily determined by material morphology rather than surface chemistry. J. Biomed. Mater. Res. 2018;106(10):2726–2734. DOI: 10.1002/jbm.a.36500.

18. Marmur E.S., Phelps R., Goldberg D.J. Clinical, histologic and electron microscopic findings after injection of a calcium hydroxylapatite filler. J. Cosmet. Laser Ther. 2004;6(4):223–226. DOI: 10.1080/147641704100003048.

19. Narins R.S., Bowman P.H. Injectable skin fillers. Clin. Plast. Surg. 2005;32(2):151–162. DOI: 10.1016/j.cps.2004.12.002.

20. Pierre S., Liew S., Bernardin A. Basics of dermal filler rheology. Dermatol. Surg. 2015;41 Suppl 1:S120–S126. DOI: 10.1097/DSS.0000000000000334.

21. Sheikh Z., Brooks P.J., Barzilay O., Fine N., Glogauer M. Macrophages, foreign body giant cells and their response to implantable biomaterials. Materials (Basel). 2015;8(9):5671–5701. DOI: 10.3390/ma8095269.

22. Tonnesen M.G., Feng X., Clark R.A.F. Angiogenesis in wound healing. J. Investig. Dermatol. Symp. Proc. 2000;5(1):40–46. DOI: 10.1046/j.1087-0024.2000.00014.x.

23. Wong V.W., Sorkin M., Glotzbach J.P., Longaker M.T., Gurtner G.C. Surgical approaches to create murine models of human wound healing. J. Biomed. Biotechnol. 2011;2011:969618. DOI: 10.1155/2011/969618.


Review

For citations:


Demyanenko I.A., Shishkina A.V., Hats Yu.S., Kalmykova N.V. Comparative Study of Injectable Implants Based on Microparticles of Various Biodegradable Materials in a Murine Model of Subcutaneous Implantation. Journal Biomed. 2022;18(2):63-76. (In Russ.) https://doi.org/10.33647/2074-5982-18-2-63-76

Views: 392


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2074-5982 (Print)
ISSN 2713-0428 (Online)