Modulating Effect of Extremely High-Frequency Low-Intensity Electromagnetic Radiation on Tissue Oxidative Metabolism and Skin Microhemodynamics
https://doi.org/10.33647/2074-5982-19-4-35-46
Abstract
We set out to examine the indicators of microhemodynamics and tissue oxidative metabolism in rats after their tenfold exposure to extremely high-frequency low-intensity electromagnetic radiation (EHF EMR). The aim was to elucidate the specifics of skin microcirculation and tissue oxidative metabolism following exposure to tenfold electromagnetic radiation of extremely high frequency. The experiment was carried out on 40 mature male Wistar rats weighing 200–220 g, which were kept in standard vivarium conditions under natural light regimen. The animals were divided into two groups with 20 rats each. The animals in the first group were biological controls and were exposed to false EHF EMR (placebo); the animals in the second group were exposed to mm-exposure in the morning, 10 sessions daily. On the 10th day of EMR exposure, the indicators of skin tissue fluorescence on the tail base were recorded. Tenfold exposure to low-intensity EHF EMR was shown to increase the concentration and intensity of NADH fluorescence, as well as the FAD and redox ratio. This indicates an increased cellular demand for ATP and the predominance of oxidative phosphorylation over other processes, thus demonstrating the activation of the respiratory chain. At the same time, an increase in endothelium-dependent vasodilation, a decrease in peripheral resistance, an increase in blood flow to the nutritive microvascular bed, and an improvement in venular outflow were observed in the microcirculatory bed. The conclusion is made that the modulating effect of EHF EMR is manifested in the rearrangements of correlations. Thus, the coefficient of variation comes to the fore – the final calculated indicator of microcirculation, which has strong negative associations with all indicators of tissue metabolism (FAD, NADH, RR). In addition, the amplitudes of endothelial rhythms associated with periodic releasing of nitric oxide by the endothelium show a strong negative association with FAD.
Keywords
About the Authors
M. Yu. RavaevaRussian Federation
Marina Yu. Ravaeva - Cand. Sci. (Biol.), Assoc. Prof., V.I. Vernadsky Crimean Federal University.
295007, Republic of Crimea, Simferopol, Academician Vernadsky Ave., 4
I. V. Cheretaev
Russian Federation
Igor V. Cheretaev - Cand. Sci. (Biol.), V.I. Vernadsky Crimean Federal University.
295007, Republic of Crimea, Simferopol, Academician Vernadsky Ave., 4
E. N. Chuyan
Russian Federation
Elena N. Chuyan - Dr. Sci. (Biol.), Prof., V.I. Vernadsky Crimean Federal University.
295007, Republic of Crimea, Simferopol, Academician Vernadsky Ave., 4
P. A. Galenko-Yaroshevskii
Russian Federation
Pavel A. Galenko-Yaroshevskii - Dr. Sci. (Med.), Prof., Corr. Member of RAS, Kuban State Medical University of the Ministry of Health Care of Russia.
350063, Krasnodar Region, Krasnodar, Mitrofanа Sedinа Str., 4
References
1. Kirilina T.V., Krasnikov G.V., Tankanag A.V., Piskunova G.M., Chemeris N.K. Prostranstvennaya sinhronizaciya kolebanij krovotoka v sisteme mikrocirkulyacii kozhi cheloveka [Spatial synchronization of the blood flow oscillations in human skin microcirculation]. Regionarnoe krovoobrashchenie i mikrocirkulyaciya [Regional blood circulation and microcirculation]. 2009;3:32–36. (In Russian).
2. Kozlov V.I., Korsi L.V., Sokolov V.G. Biofizicheskie principy lazernoj dopplerovskoj floumetrii. Primenenie lazernoj dopplerovskoj floumetrii v medicinskoj praktike [Biophysical principles of laser Doppler flowmetry. Application of laser Doppler flowmetry in medical practice]: Mat-ly vtorogo Vseross. simpoziuma [Proceedings of the Second All-Russian Symposium]. Moscow, 1998:17–24. (In Russian).
3. Kozlov V.I., Sokolov V.G. Issledovanie kolebanij krovotoka v sisteme mikrocirkulyacii. Primenenie lazernoj dopplerovskoj floumetrii v medicinskoj praktike [Investigation of blood flow fluctuations in the microcirculation system. Application of laser Doppler flowmetry in medical practice]: Mat-ly vtorogo Vseross. simpoziuma [Proceedings of the Second All-Russian Symposium]. Мoscow, 1998:8–13. (In Russian).
4. Krupatkin A.I. Funkcionalnaya diagnostika sostoyaniya mikrocirkulyatorno-tkanevyh sistem: kolebaniya, informaciya, nelinejnost [Functional diagnostics of the state of microcirculatory and tissue systems: fluctuations, information, nonlinearity]: ruk-vo dlya vrachej [guide for doctors]. Moscow: Librokom Publ., 2014:498. (In Russian).
5. Krupatkin A.I. Funkcionalnaya ocenka perivaskulyarnoj innervacii konechnostej s pomoshchyu lazernoj dopplerovskoj floumetrii [Functional evaluation of the perivascular innervation of the skin of the extremities using laser doppler flowmetry]. Fiziologiya cheloveka [Human Physiology]. 2004;30(1):99–104. (In Russian).
6. Krupatkin A.I., Rogatkin D.A., Sidorov V.V. Kliniko-diagnosticheskie pokazateli pri kompleksnom issledovanii mikrogemodinamiki i transporta kisloroda v sisteme mikrocirkulyacii. Gemoreologiya i mikrocirkulyaciya [Clinical and diagnostic indicators in the complex study of microhemodynamics and oxygen transport in the microcirculation system. Hemorheology and Microcirculation]: mat-ly shestoj Mezhdunar. konferencii [Proceedings of the Sixth International Conference]. Yaroslavl, 2007:106 (In Russian).
7. Krupatkin A.I., Sidorov V.V. Lazernaya dopplerovskaya floumetriya mikrocirkulyacii krovi [Laser Doppler flowmetry of blood microcirculation]. Moscow: Medicina Publ., 2005:125. (In Russian).
8. Krupatkin A.I., Sidorov V.V., Baranov V.V. Kolebatel'nyj kontur regulyacii linejnoj skorosti kapillyarnogo krovotoka [The oscillatory circuit for the control of velocity indices of capillary blood flow and tone organization of precapillary distributive microvessels]. Regionarnoe krovoobrashchenie i mikrocirkulyaciya [Regional blood circulation and microcirculation]. 2007;3(23):52–58. (In Russian).
9. Kurganova L.N. Perekisnoe okislenie lipidov — odna iz vozmozhnyh komponent bystroj reakcii na stress [Lipid peroxidation is one of the possible components of a rapid reaction to stress]. Vestnik Nizhegorodskogo Universiteta im. N.I. Lobachevskogo. Seriya Biologiya [Vestnik of Lobachevsky State University of Nizhni Novgorod. Biology]. 2001;2:74–76. (In Russian).
10. Lukina M.M., Shirmanova M.V., Sergeeva T.F., Zagaynova Е.V. Metabolicheskij imidzhing v issledovanii onkologicheskih processov (obzor) [Metabolical imaging for the study of oncological processes (review)]. Sovremennye tehnologii v medicine [Modern technologies in medicine. 2016;8(4):113–121. (In Russian)]. DOI: 10.17691/stm2016.8.4.16.
11. Moskvin S.V., Antipov E.V., Zarubina E.G., Ryazanova E.A. Effektivnost kislorodnogo obmena posle primeneniya lazeroforeza razlichnyh gelej na osnove gialuronovoj kisloty [Oxygen exchange effectiveness after application of different gels based on hyaluronic acid laser-phoresis]. Vestnik Esteticheskoj Mediciny [Bulletin of Aesthetic Medicine]. 2011;10(3):48–55. (In Russian).
12. Novikov V.E., Levchenkova O.S., Pozhilova Ye.V. Rol aktivnyh form kisloroda v fiziologii i patologii kletki i ih farmakologicheskaya regulyaciya [Role of reactive oxygen species in cell physiology and pathology and their pharmacological regulation]. Obzory po klinicheskoj farmakologii i lekarstvennoj terapii [Reviews on Clinical Pharmacology and Drug Therapy]. 2014;12(4):13–21. (In Russian).
13. Seregina E.S., Stelmaschuk O.A., Piavchenko G.A., Vorobyev E.V., Kuznetsova E.A., Alekseev A.G., Zherebtsov E.A., Podmasteriev K.V., Dunaev A.V. Ocenka vliyaniya antioksidantnyh veshchestv na metabolicheskie processy kletok golovnogo mozga metodom fluorescentnoj spektroskopii [Evaluation of the effect of antioxidant substances on the metabolic processes of brain cells by fluorescence spectroscopy]. Physics and Radio Electronics in Medicine and Ecology. 2018;1:62–66. (In Russian).
14. Chuyan E.N., Dzheldubaeva E.R. Nizkointensivnoe millimetrovoe izluchenie: nejroimmunoendokrinnye mekhanizmy adaptacionnyh reakcij [Low-intensity millimeter radiation: neuroimmunoendocrine mechanisms of adaptive reactions]. Simferopol: OOO «Izdatelstvo Tipografiya «Arial», 2020:624. (In Russian).
15. Chuyan E.N., Ravaeva M.Yu. Mekhanizmy vazoprotektornogo dejstviya elektromagnitnogo izlucheniya krajne vysokoj chastoty v usloviyah hronicheskogo gipokineticheskogo stressa [Mechanisms of vasoprotective action of extremely high frequency electromagnetic radiation in conditions of chronic hypokinetic stress]. Biomedicinskaya radioelektronika [Biomedical radio electronics]. 2017;3:55–65. (In Russian).
16. Chuyan E.N., Tribrat N.S., Ravaeva M.Yu., Ananchenko M.N. Tkanevaya mikrogemodinamika: vliyanie nizkointensivnogo elektromagnitnogo izlucheniya millimetrovogo diapazona [Tissue microhemodynamics: the effect of low-intensity electromagnetic radiation in the millimeter range]. Simferopol: OOO «Izdatelstvo Tipografiya «Arial», 2017:422. (In Russian).
17. Mokry M., Gal P., Harakalova M., Hutnanova Z., Kusnir J., Mozes S., Sabo J. Experimental study on predicting skin flap necrosis by fluorescence in the FAD and NADH bands during surgery. Photochem Photobiol. 2007;83(5):1193–1196. DOI: 10.1111/j.1751-1097.2007.00132.x.
18. NADH fiuorescence: from animal models to human studies. Am. J. Physiol. Cell Phisiol. 2007;292(2):615– 640. DOI: 10.1152/ajpcell.00249.2006.
19. Stefanovska A., Bracic M., Kvernmo H.D. Wavelet analysis of oscillations in peripheral blood circulation measured by Doppler technique. IEEE Trans. Biomed. Eng. 1999; 46(10):1230–1239. DOI: 10.1109/10.790500.
Review
For citations:
Ravaeva M.Yu., Cheretaev I.V., Chuyan E.N., Galenko-Yaroshevskii P.A. Modulating Effect of Extremely High-Frequency Low-Intensity Electromagnetic Radiation on Tissue Oxidative Metabolism and Skin Microhemodynamics. Journal Biomed. 2023;19(4):35-46. (In Russ.) https://doi.org/10.33647/2074-5982-19-4-35-46