Preview

Journal Biomed

Advanced search

AMPLITUDE AND SPECTRAL ANALYSIS OF ELECTROCORRTICOGRAMS IN RATS WITH TRAUMATIC BRAIN INJURY

https://doi.org/10.33647/2074-5982-15-4-107-120

Abstract

A series of amplitude and spectral studies was performed to investigate brain cortical activity in rats with traumatized brain (open penetrating traumatic brain injury (TBI)). Electrocorticograms (ECoG) were recorded on the 3rd and the 7th day following the trauma. An amplitude analysis comprised an estimation of the mean signal amplitude and the degree of Lempel — Ziv compression. A spectral analysis involved a calculation of the mean amplitude and δ-, θ-, α- and β-rhythm indices. Characteristic changes in the ECoG amplitude and spectral parameters were revealed in TBI rats. Traumatized animals demonstrated decreased values of both the mean signal amplitude, as well as the amplitudes and indices of θ-, α- and β-rhythms. At the same time, the mean amplitude and the index of delta-frequency were increased. Similar changes were observed not only near the traumatized area but also in the other brain cortex regions on the 3rd and 7th day following the trauma. The obtained results demonstrate that the investigated TBI model has numerous electro physiological similarities with traumas in clinical practice, thus being applicable for neurophysiological and pharmacological studies.

About the Authors

Yu. I. Sysoev
Saint Petersburg State Chemical Pharmaceutical University of the Ministry of Health of the Russian Federation; Institute of Translational Biomedicine of the Saint-Petersburg State University
Russian Federation

197376, Saint Petersburg, Professora Popova str., 14А;

199034, Saint Petersburg, Universitetskaya embankment, 7–9



K. A. Kroshkina
Saint Petersburg State Chemical Pharmaceutical University of the Ministry of Health of the Russian Federation
Russian Federation
197376, Saint Petersburg, Professora Popova str., 14А


V. A. P’yankova
Saint Petersburg State Chemical Pharmaceutical University of the Ministry of Health of the Russian Federation
Russian Federation
197376, Saint Petersburg, Professora Popova str., 14А


V. E. Karev
Pediatric Research and Clinical Center for Infectious Diseases of the Federal Medical and Biological Agency
Russian Federation

Cand. Sci. (Med.),

197376, Saint Petersburg, Professora Popova str., 9



S. V. Okovitiy
Saint Petersburg State Chemical Pharmaceutical University of the Ministry of Health of the Russian Federation
Russian Federation

Dr. Sci. (Med.), Prof.,

197376, Saint Petersburg, Professora Popova str., 14А



References

1. Zhirmunskaya E.A. Klinicheskaya encefalografi ya [Clinical encephalography]. Мoscow: MEJBI Publ. 1991. 118 p. (In Russian).

2. Mogilevskij A.Ya. Vliyanie stimulyacii zadnego gipotalamusa na EEG neokorteksa [The infl uence of posterior hypothalamus stimulation on neocortex EEG]. Zhurnal vysshej nervnoj deyatel’nosti [J. of Higher Nervous Activity]. 1971;21(6):1268–1278. (In Russian).

3. Rekomendacii po vedeniyu bol’nyh s ishemicheskim insul’tom i tranzitornymi ishemicheskimi atakami [Recommendations for the patients with ischemic stroke and transient ischemic attacks management]. ESO, 2008. (In Russian).

4. Simonov P.V. Emocionalnyj mozg [Emotional brain]. Moscow: Nauka, 1980. 166 p. (In Russian).

5. Sysoev Yu. I., Dagaev S.G., Kubarskaya L.G., Gaikova O.N., Uzuegbunam B.C., Modise K., et al. Nejroprotektornaya aktivnost’ agonista alfa-2 adrenoreceptorov mafedina na modeli cherepno-mozgovoj travmy u krys [Study of the neuroprotective activity of mafedine, an alpha-2 adrenergic receptor agonist, by modeling a traumatic brain injury in rats]. Biomedicine. 2019;15(1):62–77. (In Russian).

6. Andersen R., Anderson S. Physiological basis of the alpha rhythm. New York: Appleton-Century Crofts, 1968. 384 p.

7. Brumback R.A., Staton R.D. Beta-activity an electrical seizure phenomena. EEG Clin. Neurophysiol. 1981;52(3):128.

8. Chen S.F., Hsu C.W., Huang W.H., Wang J.Y. Post-injury baicalein improves histological and functional outcomes and reduces infl ammatory cytokines after experimental traumatic brain injury. Br. J. Pharmacol. 2008;155(8):1279–1296.

9. Chen X., Wu S., Chen C., et al. Omega-3 polyunsaturated fatty acid supplementation attenuates microglial-induced infl ammation by inhibiting the HMGB1/TLR4/ NF-κB pathway following experimental traumatic brain injury. J. Neuroinfl ammation. 2017;14(1):143.

10. Chirumamilla S., Sun D., Bullock M.R., Colello R.J. Traumatic brain injury induced cell proliferation in the adult mammalian central nervous system. J. Neurotrauma. 2002;19(6):693–703.

11. Dash P.K., Mach S.A., Moore A.N. Enhanced neurogenesis in the rodent hippocampus following traumatic brain injury. J. Neurosci. Res. 2001;63(4):313–319.

12. Dixon C.E., Clifton G.L., Lighthall J.W., et al. Controlled cortical impact model of traumatic brain injury in the rat. J. Neurosci. Methods. 1991;39(3):253–262.

13. Dixon C.E., Lyeth B.G., Povlishock J.T., et al. A fl uid percussion model of experimental brain injury in the rat. J. Neurosurg. 1987;67(1):110–119.

14. Faul M., Coronado V. Handbook of clinical neurology. Vol. 127. Traumatic brain injury. Part 1. 2015. P. 1–13.

15. Fenton G., McClelland R., Montgomery A., et al. The postconcussional syndrome: social antecedents and psychological sequelae. Br. J. Psychiatry. 1993;162:493–497.

16. Gao X., Enikolopov G., Chen J. Moderate traumatic brain injury promotes proliferation of quiescent neural progenitors in the adult hippocampus. Exp. Neurol. 2009;219(2):516–523.

17. Gosselin N., Lassonde M., Petit D., et al. Sleep following sport-related concussions. Sleep Med. 2009;10(1):35–46.

18. Isaev N.K., Novikova S.V., Stelmashook E.V., et al. Mitochondria-targeted plastoquinone antioxidant skqr1 decreases trauma-induced neurological defi cit in rat. Biochemistry (Moscow). 2012;77(9):996–999.

19. Korn A., Golan H., Melamed I., Pascual-Marqui R., Friedman A. Focal cortical dysfunction and bloodbrain barrier disruption in patients with Postconcussion syndrome. J. Clin. Neurophysiol. 2005;22(1):1–9.

20. Paxinos G., Watson C. The rat brain in stereotaxic coordinates. 6th edition. Academic press, 2007. P. 456.

21. Rice A.C., Khaldi A., Harvey H.B., et al. Proliferation and neuronal differentiation of mitotically active cells following traumatic brain injury. Exp. Neurol. 2003;183(2):406–417.

22. Tebano M.T., Cameroni M., Gallozzi G., et al. EEG spectral analysis after minor head injury in man. Electroencephalogr. Clin. Neurophysiol. 1988;70(2):185–189.

23. Vanderwolf C.H. Hippocampal electrical activity and voluntary movement in the rat. Electroencephalogr. Clin. Neurophysi ol. 1969;26(4):407–418.


Review

For citations:


Sysoev Yu.I., Kroshkina K.A., P’yankova V.A., Karev V.E., Okovitiy S.V. AMPLITUDE AND SPECTRAL ANALYSIS OF ELECTROCORRTICOGRAMS IN RATS WITH TRAUMATIC BRAIN INJURY. Journal Biomed. 2019;(4):107-120. (In Russ.) https://doi.org/10.33647/2074-5982-15-4-107-120

Views: 777


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2074-5982 (Print)
ISSN 2713-0428 (Online)