Physical and Biochemical Properties of N-Acetyl Transferase RimL of the Hyperthermophilic Bacteria Thermus thermophilus
https://doi.org/10.33647/2074-5982-20-3-47-51
Abstract
Bacterial N-terminal acetyltransferases (NATs) are involved in the biosynthesis/degradation of antibiotics. The RimL enzyme from E. coli provides it with resistance to the antibiotic microcin C. To date, the NATs of pathogenic bacteria have been well studied, but there is no data on the NATs of thermophilic bacteria. The purpose of the work is to study the physicochemical properties and specificity of a new NAT — RimL from Thermus thermophilus. We cloned the RimL ORF (TTHA1799) and developed a method for purifying the enzyme. The stability of RimL to pH, high temperatures and denaturing agents was studied using the protein intrinsic fluorescence method. We have obtained a thermophilic enzyme that can be used in biotechnology for the acetylation of proteins and peptides under non-standard conditions.
Keywords
About the Authors
M. V. TrunilinaRussian Federation
Maria V. Trunilina
142290, Moscow Region, Pushchino, Nauki Ave., 3
A. A. Vologzhannikova
Russian Federation
Alisa A. Vologzhannikova, Cand. Sci. (Biol.)
142290, Moscow Region, Pushchino, Nauki Ave., 3
T. A. Kudryashov
Russian Federation
Timofey A. Kudryashov
142290, Moscow Region, Pushchino, Nauki Ave., 3
E. V. Loktyushov
Russian Federation
Eugene V. Loktyushov
142290, Moscow Region, Pushchino, Nauki Ave., 3
V. V. Bykov
Russian Federation
Vyacheslav V. Bykov
142290, Moscow Region, Pushchino, Nauki Ave., 3
A. S. Sokolov
Russian Federation
Andrey S. Sokolov, Cand. Sci. (Biol.)
142290, Moscow Region, Pushchino, Nauki Ave., 3
Yu. S. Lapteva
Russian Federation
Yulia S. Lapteva, Cand. Sci. (Biol.)
142290, Moscow Region, Pushchino, Nauki Ave., 3
References
1. Burckhardt R.M., Escalante-Semerena J.C. Smallmolecule acetylation by GCN5-related N-acetyltransferases in bacteria. Microbiol. Mol. Biol. Rev. 2020;84(2):e00090-19. DOI: 10.1128/MMBR.00090-19
2. Chen J., Li H., Wang T., Sun S., Liu J., Chen J. Production of N(alpha)-acetyl Talpha1-HSA through in vitro acetylation by RimJ. Oncotarget. 2017;8(56):95247–95255.
3. Hentchel K.L., Escalante-Semerena J.C. Acylation of biomolecules in prokaryotes: A widespread strategy for the control of biological function and metabolic stress. Microbiol. Mol. Biol. Rev. 2015;79(3):321–346. DOI: 10.1128/MMBR.00020-15
4. Huang E., Yousef A.E. Biosynthesis of paenibacillin, a lantibiotic with N-terminal acetylation, by Paenibacillus polymyxa. Microbiol. Res. 2015;181:15– 21. DOI: 10.1016/j.micres.2015.08.001
5. Johnson M., Coulton A.T., Geeves M.A., Mulvihill D.P. Targeted amino-terminal acetylation of recombinant proteins in E. coli. PLoS One. 2010;5(12):e15801. DOI: 10.1371/journal.pone.0015801
6. Kazakov T., Kuznedelov K., Semenova E., Mukhamedyarov D., Datsenko K.A., Metlitskaya A., Vondenhoff G.H., Tikhonov A., Agarwal V., Nair S., Van Aerschot A., Severinov K. The RimL transacetylase provides resistance to translation inhibitor microcin C. J. Bacteriology. 2014;196(19):3377–3385. DOI: 10.1128/JB.01584-14
7. Ren J., Sang Y., Lu J., Yao Y.F. Protein acetylation and its role in bacterial virulence. Trends Microbiol. 2017;25(9):768–779. DOI: 10.1016/j.tim.2017.04.001
8. Vetting M.W., de Carvalho L.P., Roderick S.L., Blanchard J.S. A novel dimeric structure of the RimL N-acetyltransferase from Salmonella typhimurium. J. Biol. Chem. 2005;280:22108–22114. DOI: 10.1074/jbc.M502401200
Review
For citations:
Trunilina M.V., Vologzhannikova A.A., Kudryashov T.A., Loktyushov E.V., Bykov V.V., Sokolov A.S., Lapteva Yu.S. Physical and Biochemical Properties of N-Acetyl Transferase RimL of the Hyperthermophilic Bacteria Thermus thermophilus. Journal Biomed. 2024;20(3):47-51. (In Russ.) https://doi.org/10.33647/2074-5982-20-3-47-51