Differences in Models of Traumatic Brain Injury and the Subsequent Behavior Assessment in Rats and Mice
https://doi.org/10.33647/2074-5982-20-3-121-124
Abstract
Traumatic brain injury (TBI) is associated with varied and unpredictable consequences, which can be manifested during both acute and long-term periods. Such consequences may lead to the development of neurodegenerative diseases years and even decades after the injury. Given the heterogeneous nature of TBI in humans, preclinical studies need to be conducted using different test systems. Currently, preference is given to rodents due to their availability and low cost. However, the choice of test systems for research should be based not only on economic and logistical components, but also on their specific physiological characteristics.
About the Authors
S. A. ChervonetskyRussian Federation
Sergey A. Chervonetsky
197376, Saint Petersburg, Professora Popova Str., 14, lit. A
A. A. Paimulina
Russian Federation
Alexandra A. Paimulina
197376, Saint Petersburg, Professora Popova Str., 14, lit. A
N. O. Selizarova
Russian Federation
Natalya O. Selizarova, Cand. Sci. (Med.), Assoc. Prof.
197376, Saint Petersburg, Professora Popova Str., 14, lit. A
References
1. Prikhodko V.A., Kan A.V., Sysoev Yu.I., Titovich I.A., Anisimova N.A., Okovity S.V. Otsenka neyroprotektornoy aktivnosti novogo proizvodnogo allilmorfolina na modeli cherepno-mozgovoy travmy u krys [Evaluation of the neuroprotective activity of a new allylmorpholine derivative in a rat model of traumatic brain injury]. Razrabotka i registratsiya lekarstvennykh sredstv [Drug development & registration]. 2021;10(S4):179–187. (In Russian)]. DOI: 10.33380/2305-2066-2021-10-4(1)-179-187
2. Bajwa N.M., Kesavan C., Mohan S. Long-term consequences of traumatic brain injury in bone metabolism. Front. Neurol. 2018;9:115. DOI: 10.3389/fneur.2018.00115
3. Bolivar V.J., Caldarone B.J., Reilly A.A., Flaherty L. Habituation of activity in an open field: A survey of inbred strains and F1 hybrids. Behav. Genet. 2000;30(4):285–293. DOI: 10.1023/A:1026545316455
4. Dixon L.K., Defries J.C. Development of open field behavior in mice: Effects of age and experience. Dev. Psychobiol. 1968;1(2):100–107. DOI: 10.1002/dev.420010207
5. Feeney D.M., Boyeson M.G., Linn R.T., Murray H.M., Dail W.G. Responses to cortical injury: I. methodology and local effects of contusions in the rat. Brain Research. 1981;211(1):67–77. DOI: 10.1016/0006-8993(81)90067-6
6. Furmanski O., Nieves M.D., Doughty M.L. Controlled cortical impact model of mouse brain injury with therapeutic transplantation of human induced pluripotent stem cell-derived neural cells. J. Vis. Exp. 2019;149. DOI: 10.3791/59561
7. Harrison F.E., Hosseini A.H., McDonald M.P. Endogenous anxiety and stress responses in water maze and Barnes maze spatial memory tasks. Behav. Brain Res. 2009;198(1):247–251. DOI: 10.1016/j.bbr.2008.10.015
8. Romine J., Gao X., Chen J. Controlled cortical impact model for traumatic brain injury. J. Vis. Exp. 2014;90:e51781. DOI: 10.3791/51781
Review
For citations:
Chervonetsky S.A., Paimulina A.A., Selizarova N.O. Differences in Models of Traumatic Brain Injury and the Subsequent Behavior Assessment in Rats and Mice. Journal Biomed. 2024;20(3):121-124. (In Russ.) https://doi.org/10.33647/2074-5982-20-3-121-124