Preview

Journal Biomed

Advanced search

Role of Alternative Splicing in Oncogenesis

https://doi.org/10.33647/2074-5982-20-3-130-135

Abstract

Over the past two decades, much evidence has accumulated that confirms the crucial role of alternative splicing in the process of tumorigenesis. A more detailed study of splicing mechanisms revealed that targeting the central process for atypical cells could be a potential new approach in the treatment of malignant neoplasms. Firstly, specific protein isoforms that are formed as a result of alternative splicing and are involved in tumorigenesis can potentially act as a target for the treatment of malignant neoplasms. Second, high rates of cell proliferation presumably make tumor cells highly dependent on a functional spliceosome, creating potential hypersensitivity to global splicing modulation. The study of the role of alternative splicing in tumorigenesis and the search for therapeutic targets contributed not only to the development of  a more promising direction in oncology, but also to the search for new drugs that have a targeted effect on the development of malignant neoplasms.

About the Authors

O. M. Kudelina
Rostov State Medical University of the Ministry of Health Care of Russia
Russian Federation

Oksana M. Kudelina*, Cand. Sci. (Med.)

344022, Rostov-on-Don, Nakhichevansky Lane, 29



A. V. Safronenko
Rostov State Medical University of the Ministry of Health Care of Russia
Russian Federation

Andrey V. Safronenko, Dr. Sci. (Med.), Prof.

344022, Rostov-on-Don, Nakhichevansky Lane, 29



M. Kh.-B. Burayeva
Rostov State Medical University of the Ministry of Health Care of Russia
Russian Federation

Maret Kh.-B. Burayeva

344022, Rostov-on-Don, Nakhichevansky Lane, 29



M. Kh.-B. Burayeva
National Medical Research Centre for Oncology of the Ministry of Health Care of Russia
Russian Federation

Malika Kh.-B. Burayeva

344037, Rostov-on-Don, 14th Liniya Str., 63



S. A. Velichko
Rostov State Medical University of the Ministry of Health Care of Russia
Russian Federation

Sofia A. Velichko

344022, Rostov-on-Don, Nakhichevansky Lane, 29



D. Terekhova
Rostov State Medical University of the Ministry of Health Care of Russia
Russian Federation

Diana A. Terekhova

344022, Rostov-on-Don, Nakhichevansky Lane, 29



N. S. Benderskii
Rostov State Medical University of the Ministry of Health Care of Russia
Russian Federation

Nikita S. Benderskii

344022, Rostov-on-Don, Nakhichevansky Lane, 29



A. A. Tolstoy
Rostov State Medical University of the Ministry of Health Care of Russia
Russian Federation

Artem A. Tolstoy

344022, Rostov-on-Don, Nakhichevansky Lane, 29



References

1. Abramowicz A., Gos M. Splicing mutations in human genetic disorders: examples, detection, and confirmation. J. Appl. Genet. 2018;59(3):253–268. DOI: 10.1007/s13353-018-0444-7

2. Bessa C., Matos P., Jordan P., Gonçalves V. Alternative splicing: Expanding the landscape of cancer biomarkers and therapeutics. Int. J. Mol. Sci. 2020;21(23):9032. DOI: 10.3390/ijms21239032

3. Bradley R.K., Anczuków O. RNA splicing dysregulation and the hallmarks of cancer. Nat. Rev. Cancer. 2023;23(3):135–155. DOI: 10.1038/s41568-022-00541-7

4. Chen S., Benbarche S., Abdel-Wahab O. Splicing factor mutations in hematologic malignancies. Blood. 2021;138(8):599–612. DOI: 10.1182/blood.2019004260

5. Dalton W.B., Helmenstine E., Pieterse L., Li B., Gocke C.D., Donaldson J., Xiao Z., Gondek L.P., Ghiaur G., Gojo I., Smith B.D., Levis M.J., DeZern A.E. The K666N mutation in SF3B1 is associated with increased progression of MDS and distinct RNA splicing. Blood Adv. 2020;4(7):1192–1196. DOI: 10.1182/bloodadvances.2019001127

6. Ghigna C., Paronetto M.P. Alternative splicing: Recent insights into mechanisms and functional roles. Cells. 2020;9(10):2327. DOI: 10.3390/cells9102327

7. Jayasinghe R.G., Cao S., Gao Q., Wendl M.C., Vo N.S., Reynolds S.M., Zhao Y., Climente-González H., Chai S., Wang F., Varghese R., Huang M., Liang W.W., Wyczalkowski M.A., Sengupta S., Li Z., Payne S.H., Fenyö D., Miner J.H., Walter M.J.; Cancer Genome Atlas Research Network; Vincent B., Eyras E., Chen K., Shmulevich I., Chen F., Ding L. Systematic analysis of splice-site-creating mutations in cancer. Cell Rep. 2018;23(1):270–281.e3. DOI: 10.1016/j.celrep.2018.03.052

8. Jiang M., Chen M., Liu Q., Jin Z., Yang X., Zhang W. SF3B1 mutations in myelodysplastic syndromes: A potential therapeutic target for modulating the entire disease process. Front. Oncol. 2023;13:1116438. DOI: 10.3389/fonc.2023.1116438


Review

For citations:


Kudelina O.M., Safronenko A.V., Burayeva M.Kh., Burayeva M.Kh., Velichko S.A., Terekhova D., Benderskii N.S., Tolstoy A.A. Role of Alternative Splicing in Oncogenesis. Journal Biomed. 2024;20(3):130-135. (In Russ.) https://doi.org/10.33647/2074-5982-20-3-130-135

Views: 159


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2074-5982 (Print)
ISSN 2713-0428 (Online)