Preview

Journal Biomed

Advanced search

Use of a Hyperoxic Heated Helium-Oxygen Mixture in an Experimental Model of Cerebral Arterial Air Embolism

https://doi.org/10.33647/2713-0428-20-3E-140-146

Abstract

Arterial gas embolism can result from complications related to medical and surgical procedures, as well as a direct entry of air into the systemic circulation due to the disruption of the alveolar-capillary barrier. Since air in the arterial circulation can lead to organ ischemia, this life-threatening pathology requires prompt intervention. In this study, we demonstrated the effectiveness of using a hyperoxic heated helium-oxygen mixture in cerebral arterial air embolism. Oxygen therapy under normobaric conditions did not affect the outcome of arterial air embolism. A continuous inhalation session for 30 min, or intermittent inhalation sessions 3 times for 5 min each, eliminated foci of ischemic stroke in rats.

About the Authors

V. A. Palikov
Branch of the Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences; Pushchino Branch of the Russian Biotechnological University
Russian Federation

Viktor A. Palikov 

142290, Moscow Region, Pushchino, Nauki Ave., 6;
142290, Moscow Region, Pushchino, Nauki Ave., 3



N. B. Pavlov
Institute of Medical and Biological Problems of the Russian Academy of Sciences; Special Design Bureau for Experimental Equipment at the Institute of Medical and Biological Problems of the Russian Academy of Sciences
Russian Federation

Nikolay B. Pavlov, Cand. Sci. (Med.), Assoc. Prof. 

123007, Moscow, Khoroshevskoe Highway, 76A;
141400, Moscow Region, Khimki, Vashutinskoe Highway, 1



R. R. Amirov
Institute of Medical and Biological Problems of the Russian Academy of Sciences; Special Design Bureau for Experimental Equipment at the Institute of Medical and Biological Problems of the Russian Academy of Sciences
Russian Federation

Rustam R. Amirov 

123007, Moscow, Khoroshevskoe Highway, 76A;
141400, Moscow Region, Khimki, Vashutinskoe Highway, 1



A. M. Ismailova
Branch of the Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences
Russian Federation

Alina M. Ismailova 

142290, Moscow Region, Pushchino, Nauki Ave., 6



S. O. Afanasyeva
Pushchino Branch of the Russian Biotechnological University
Russian Federation

Sofia O. Afanasyeva 

142290, Moscow Region, Pushchino, Nauki Ave., 3



E. S. Mikhailov
Branch of the Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences; Pushchino Branch of the Russian Biotechnological University
Russian Federation

Evgeniy S. Mikhailov 

142290, Moscow Region, Pushchino, Nauki Ave., 6;
142290, Moscow Region, Pushchino, Nauki Ave., 3



A. V. Bervinova
Branch of the Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences; Pushchino Branch of the Russian Biotechnological University
Russian Federation

Arina V. Bervinova 

142290, Moscow Region, Pushchino, Nauki Ave., 6;
142290, Moscow Region, Pushchino, Nauki Ave., 3



I. A. Dyachenko
Branch of the Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences; Pushchino Branch of the Russian Biotechnological University
Russian Federation

Igor A. Dyachenko, Cand. Sci. (Biol.), Assoc. Prof. 

142290, Moscow Region, Pushchino, Nauki Ave., 6;
142290, Moscow Region, Pushchino, Nauki Ave., 3



A. T. Logunov
Special Design Bureau for Experimental Equipment at the Institute of Medical and Biological Problems of the Russian Academy of Sciences
Russian Federation

Aleksey T. Logunov 

141400, Moscow Region, Khimki, Vashutinskoe Highway, 1



A. N. Murashev
Branch of the Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences; Pushchino Branch of the Russian Biotechnological University
Russian Federation

Arkadiy N. Murashev, Dr. Sci. (Biol.), Prof. 

142290, Moscow Region, Pushchino, Nauki Ave., 6;
142290, Moscow Region, Pushchino, Nauki Ave., 3



References

1. Coburn M., Maze M., Franks N. The neuroprotective effects of xenon and helium in an in vitro model of traumatic brain injury. Crit. Care Med. 2008;36(2):588–595. DOI: 10.1097/01.CCM.0B013E3181611F8A6

2. Datta S.R., Brunet A., Greenberg M.E. Cellular survival: A play in three Akts. Genes Dev. 1999;13(22):2905–2927. DOI: 10.1101/gad.13.22.2905

3. Gordy S., Rowell S. Vascular air embolism. Int. J. Crit. Ill. Inj. Sci. 2013;3(1):73–76. DOI: 10.4103/2229-5151.109428

4. Lyaker M.R., Tulman D.B., Dimitrova G.T., Pin R.H., Papadimos T.J. Arterial embolism. Int. J. Crit. Ill. Inj. Sci. 2013;3(1):77–87. DOI: 10.4103/2229-5151.109429

5. Marsh P.L., Moore E.E., Moore H.B., Bunch C.M., Aboukhaled M., Condon S.M. 2nd, Al-Fadhl M.D., Thomas S.J., Larson J.R., Bower C.W., Miller C.B., Pearson M.L., Twilling C.L., Reser D.W., Kim G.S., Troyer B.M., Yeager D., Thomas S.G., Srikureja D.P., Patel S.S., Añón S.L., Thomas A.V., Miller J.B., Van Ryn D.E., Pamulapati S.V., Zimmerman D., Wells B., Martin P.L., Seder C.W., Aversa J.G., Greene R.B., March R.J., Kwaan H.C., Fulkerson D.H., Vande Lune S.A., Mollnes T.E., Nielsen E.W., Storm B.S., Walsh M.M. Iatrogenic air embolism: pathoanatomy, thromboinflammation, endotheliopathy, and therapies. Front. Immunol. 2023;14:1230049. DOI: 10.3389/fimmu.2023.1230049

6. Moon R.E. Hyperbaric oxygen treatment for air or gas embolism. Undersea Hyperb. Med. 2014;41(2):159–166.

7. Oei G., Weber N., Hollmann M.W., Preckel B. Cellular effects of helium in different organs. Anesthesiology. 2010;112(6):1503–1510. DOI: 10.1097/ALN.0b013e3181d9cb5e

8. Pagel P.S., Krolikowski J.G., Shim Y.H., Venkatapuram S., Kersten J.R., Weihrauch D., Warltier D.C., Pratt P.F. Jr. Noble gases without anesthetic properties protect myocardium against infarction by activating prosurvival signaling kinases and inhibiting mitochondrial permeability transition in vivo. Anesth. Analg. 2007;105(3):562–569. DOI: 10.1213/01.ane.0000278083.31991.36

9. Pan Yi., Zhang H., VanDeripe D.R., Cruz-Flores S., Panneton W.M. Heliox and oxygen reduce infarct volume in a rat model of focal ischemia. Exp. Neurol. 2007;205(2):587–590. DOI: 10.1016/j.expneurol.2007.03.023

10. van Hulst R.A., Klein J., Lachmann B. Gas embolism: Pathophysiology and treatment. Clin. Physiol. Funct. Imaging. 2003;23(5):237–246. DOI: 10.1046/j.1475-097x.2003.00505.x


Review

For citations:


Palikov V.A., Pavlov N.B., Amirov R.R., Ismailova A.M., Afanasyeva S.O., Mikhailov E.S., Bervinova A.V., Dyachenko I.A., Logunov A.T., Murashev A.N. Use of a Hyperoxic Heated Helium-Oxygen Mixture in an Experimental Model of Cerebral Arterial Air Embolism. Journal Biomed. 2024;20(3E):140-146. (In Russ.) https://doi.org/10.33647/2713-0428-20-3E-140-146

Views: 124


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2074-5982 (Print)
ISSN 2713-0428 (Online)