Preview

Journal Biomed

Advanced search

Study of the Biodistribution of a Tissue-Engineered Product Based on Human Chondrocytes of Various Sources After Implantation into Balb/c Nude Mice

https://doi.org/10.33647/2713-0428-20-3E-160-175

Abstract

In this research, we develop a tissue-engineered product (TEP) based on chondrocytes of various genesis in the form of 3D structures (chondrospheres) after subcutaneous implantation in immunodeficient Balb/c Nude mice and investigate its biodistribution profile. Initially, chondrospheres based on chondrocytes and chondrocytes from differentiated induced pluripotent stem cells (iPSCs), including lines with a knockout of the β2m gene, were implanted. The animals were monitored for nine months. Further, after euthanasia, organ and tissue samples were obtained for histological analysis, evaluation of the viability of the implant, its integration and biodistribution research by PCR. Chondrospheres from differentiated iPSCs derivatives of both types successfully integrated into the surrounding tissues in the inoculation zones and formed cartilage tissue. In the samples near the implantation zone of the experimental groups of animals, no human DNA was detected. Human DNA was found in the samples of organs of the control groups (introduction of MDA231 and mesenchymal stem cells). Thus, three and nine months after implantation, the studied TEP samples demonstrated the absence of biodistribution to other tissues and organs of mice, which indicates the safety of the drug being developed.

About the Authors

P. A. Golubinskaya
Federal Scientific and Clinical Center of Physical and Chemical Medicine named after Yu.M. Lopukhin of the Federal Medical and Biological Agency of Russia
Russian Federation

Polina A. Golubinskaya, Cand. Sci. (Med.) 

119435, Moscow, Malaya Pirogovskaya Str., 1a



A. S. Pikina
Federal Scientific and Clinical Center of Physical and Chemical Medicine named after Yu.M. Lopukhin of the Federal Medical and Biological Agency of Russia
Russian Federation

Arina S. Pikina 

119435, Moscow, Malaya Pirogovskaya Str., 1a



E. S. Ruchko
Federal Scientific and Clinical Center of Physical and Chemical Medicine named after Yu.M. Lopukhin of the Federal Medical and Biological Agency of Russia
Russian Federation

Eugene S. Ruchko 

119435, Moscow, Malaya Pirogovskaya Str., 1a



E. V. Kozhenevskaya
Lobachevsky State University of Nizhny Novgorod
Russian Federation

Evgeniya V. Kozhenevskaya 

603022, Nizhny Novgorod, Gagarina Ave., 23



A. Dz. Pospelov
Lobachevsky State University of Nizhny Novgorod
Russian Federation

Anton Dz. Pospelov 

603022, Nizhny Novgorod, Gagarina Ave., 23



A. A. Babaev
Lobachevsky State University of Nizhny Novgorod
Russian Federation

Aleksej A. Babaev, Cand. Sci. (Biol.) 

603022, Nizhny Novgorod, Gagarina Ave., 23



V. A. Ivanov
Federal Scientific and Clinical Center of Physical and Chemical Medicine named after Yu.M. Lopukhin of the Federal Medical and Biological Agency of Russia
Russian Federation

Viktor A. Ivanov 

119435, Moscow, Malaya Pirogovskaya Str., 1a



Ju. A. Bespyatykh
Federal Scientific and Clinical Center of Physical and Chemical Medicine named after Yu.M. Lopukhin of the Federal Medical and Biological Agency of Russia
Russian Federation

Julia A. Bespyatykh, Cand. Sci. (Biol.) 

119435, Moscow, Malaya Pirogovskaya Str., 1a



L. S. Shnayder
Moscow Clinical Scientific Center named after A.S. Loginov of the Moscow Health Care Department
Russian Federation

Lev S. Shnayder, Cand. Sci. (Med.) 

111123, Moscow, Novogireyevskaya Str., 1, Building 1



A. V. Eremeev
Federal Scientific and Clinical Center of Physical and Chemical Medicine named after Yu.M. Lopukhin of the Federal Medical and Biological Agency of Russia
Russian Federation

Artem V. Eremeev, Cand. Sci. (Biol.) 

119435, Moscow, Malaya Pirogovskaya Str., 1a



References

1. Bogomiakova M.E., Eremeev A.V., Lagarkova M.A. «Svoy sredi chuzhikh»: mozhno li sozdat' gipoimmunogennye linii plyuripotentnykh stvolovykh kletok? [At home among strangers: Is it possible to create hypoimmunogenic pluripotent stem cell lines?]. Molekulyarnaya biologiya [Molecular Biology]. 2019;53(5):75–740. (In Russian). DOI: 10.1134/S0026898419050045

2. Pikina A.S., Golubinskaya P.A., Ruchko E.S., Kozhenevskaya E.V., Pospelov A.D., Babaev A.A., Eremeev A.V. Issledovanie bioraspredeleniya biomeditsinskogo kletochnogo produkta na osnove khondrotsitov cheloveka pri implantatsii mysham linii BALB/C Nude [Assessing biodistribution of biomedical cellular product based on human chondrocytes following implantation to BALB/C nude mic]. Meditsina ekstremal'nykh situatsiy [Extreme Medicine]. 2023;4:123–130. (In Russian). DOI: 10.47183/mes.2023.057

3. Abe K., Yamashita A., Morioka M., Horike N., Takei Y., Koyamatsu S., Okita K., Matsuda S., Tsumaki N. Engraftment of allogeneic iPS cell-derived cartilage organoid in a primate model of articular cartilage defect. Nat. Commun. 2023;14(1):804. DOI: 10.1038/s41467-023-36408-0

4. Apelgren P., Amoroso M., Lindahl A., Brantsing C., Rotter N., Gatenholm P., Kölby L. Chondrocytes and stem cells in 3D-bioprinted structures create human cartilage in vivo. PLoS One. 2017;12(12): e0189428. DOI: 10.1371/journal.pone.0189428

5. Bogomiakova M.E., Sekretova E.K., Anufrieva K.S., Khabarova P.O., Kazakova A.N., Bobrovsky P.A., Grigoryeva T.V., Eremeev A.V., Lebedeva O.S., Bogomazova A.N., Lagarkova M.A. iPSC derived cells lack immune tolerance to autologous NK cells due to imbalance in ligands for activating and inhibitory NK-cell receptors. Stem Cell Res Ther. 2023;14(1):77. DOI: 10.1186/s13287-023-03308-5

6. Bogomiakova M.E., Sekretova E.K., Eremeev A.V., Shuvalova L.D., Bobrovsky P.A., Zerkalenkova E.A., Lebedeva O.S., Lagarkova M.A. Derivation of induced pluripotent stem cells line (RCPCMi007-A-1) with inactivation of the beta-2-microglobulin gene by CRISPR/Cas9 genome editing. Stem Cell Res. 2021;55:102451. DOI: 10.1016/j.scr.2021.102451

7. Delanois R.E., Etcheson J.I., Sodhi N., Henn R.F., Gwam C.U., George N.E., Mont M.A. Biologic therapies for the treatment of knee osteoarthritis. J. Arthroplasty. 2019;34(4):801–813. DOI: 10.1016/j.arth.2018.12.001

8. Eremeev A., Belikova L., Ruchko E., Volovikov E., Zubkova O., Emelin A., Deev R., Lebedeva O., Bogomazova A., Lagarkova M. Brain organoid generation from induced pluripotent stem cells in home-made mini bioreactors. J. Vis. Exp. 2021;178. DOI: 10.3791/62987

9. Eremeev A., Pikina A., Ruchko Y., Bogomazova A. Clinical potential of cellular material sources in the generation of iPSC-based products for the regeneration of articular cartilage. Int. J. Mol. Sci. 2023;24(19):14408. DOI: 10.3390/ijms241914408

10. Fickert S., Gerwien P., Helmert B., Schattenberg T., Weckbach S., Kaszkin-Bettag M., Lehmann L. O-neyear clinical and radiological results of a prospective, investigator-initiated trial examining a novel, purely autologous 3-dimensional autologous chondrocyte transplantation product in the knee. Cartilage. 2012;3(1):27–42. DOI: 10.1177/1947603511417616

11. European Medicines Agency. Spherox: Spheroids of human autologous matrix-associated chondrocytes. URL: https://www.ema.europa.eu/en/medicines/human/EPAR/spherox

12. Hwang J.J., Choi J., Rim Y.A., Nam Y., Ju J.H. Application of induced pluripotent stem cells for disease modeling and 3d model construction: Focus on osteoarthritis. Cells. 2021;10(11):3032. DOI: 10.3390/cells10113032

13. Jiang Y., Tuan R.S. Bioactivity of human adult stem cells and functional relevance of stem cell-derived extracellular matrix in chondrogenesis. Stem Cell Res. Ther. 2023;14(1):160. DOI: 10.1186/s13287-023-03392-7

14. Kawata M., Mori D., Kanke K., Hojo H., Ohba S., Chung U.I, Yano F., Masaki H., Otsu M., Nakauchi H., Tanaka S., Saito T. Simple and robust differentiation of human pluripotent stem cells toward chondrocytes by two small-molecule compounds. Stem Cell Reports. 2019;13(3):530–544. DOI: 10.1016/j.stemcr.2019.07.012

15. Kreuz P.C., Kalkreuth R.H., Niemeyer P., Uhl M., Erggelet C. Long-term clinical and MRI results of matrix-assisted autologous chondrocyte implantation for articular cartilage defects of the knee. Cartilage. 2019;10(3):305–313. DOI: 10.1177/1947603518756463

16. Madrid M., Sumen C., Aivio S., Saklayen N. Autologous induced pluripotent stem cell–based cell therapies: Promise, progress, and challenges. Curr. Protoc. 2021;1(3):e88. DOI: 10.1002/cpz1.88

17. Murphy C., Mobasheri A., Táncos Z., Kobolák J., Dinnyés A. The potency of induced pluripotent stem cells in cartilage regeneration and osteoarthritis treatment. Adv. Exp. Med. Biol. 2018:1079:55–68. DOI: 10.1007/5584_2017_141

18. Nakamura A., Murata D., Fujimoto R., Tamaki S., Nagata S., Ikeya M., Toguchida J., Nakayama K. Bio-3D printing iPSC-derived human chondrocytes for articular cartilage regeneration. Biofabrication. 2021;13(4). DOI: 10.1088/1758-5090/ac1c99

19. Niemeyer P., Laute V., Zinser W., John T., Becher C., Diehl P., Kolombe T., Fay J., Siebold R., Fickert S. Safety and efficacy of matrix-associated autologous chondrocyte implantation with spheroid technology is independent of spheroid dose after 4 years. Knee Surg. Sports Traumatol. Arthrosc. 2020;28(4):1130–1143. DOI: 10.1007/s00167-019-05786-8

20. Price A.J., Alvand A., Troelsen A., Katz J.N., Hooper G., Gray A., Carr A., Beard D. Knee replacement. Lancet. 2018;392(10158):1672–1682. DOI: 10.1016/S0140-6736(18)32344-4

21. Riedl M., Vadalà G., Papalia R., Denaro V. Threedimensional, scaffold-free, autologous chondrocyte transplantation: A systematic review. Orthop. J. Sports Med. 2020;8(9):2325967120951152 DOI: 10.1177/2325967120951152

22. Shah S.S., Mithoefer K. Scientific developments and clinical applications utilizing chondrons and chondrocytes with matrix for cartilage repair. Cartilage. 2021;13(1_suppl):1195S–1205S. DOI: 10.1177/1947603520968884

23. Yamanaka S. Pluripotent stem cell-based cell therapy — promise and challenges. Cell Stem Cell. 2020;27(4):523–531. DOI: 10.1016/j.stem.2020.09.014

24. Yamashita A., Morioka M., Yahara Y., Okada M., Kobayashi T., Kuriyama S., Matsuda S., Tsumaki N. Generation of scaffoldless hyaline cartilaginous tissue from human iPSCs. Stem Cell Reports. 2015;4(3):404–418. DOI: 10.1016/j.stemcr.2015.01.016

25. Zscharnack M., Krause C., Aust G., Thümmler C., Peinemann F., Keller T., Smink J.J., Holland H., Somerson J.S., Knauer J., Schulz R.M., Lehmann J. Preclinical good laboratory practice-compliant safety study to evaluate biodistribution and tumorigenicity of a cartilage advanced therapy medicinal product (ATMP). J. Transl. Med. 2015;13:160. DOI: 10.1186/s12967-015-0517-x


Review

For citations:


Golubinskaya P.A., Pikina A.S., Ruchko E.S., Kozhenevskaya E.V., Pospelov A.D., Babaev A.A., Ivanov V.A., Bespyatykh J.A., Shnayder L.S., Eremeev A.V. Study of the Biodistribution of a Tissue-Engineered Product Based on Human Chondrocytes of Various Sources After Implantation into Balb/c Nude Mice. Journal Biomed. 2024;20(3E):160-175. (In Russ.) https://doi.org/10.33647/2713-0428-20-3E-160-175

Views: 137


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2074-5982 (Print)
ISSN 2713-0428 (Online)