Study of the Biodistribution of a Tissue-Engineered Product Based on Human Chondrocytes of Various Sources After Implantation into Balb/c Nude Mice
https://doi.org/10.33647/2713-0428-20-3E-160-175
Abstract
In this research, we develop a tissue-engineered product (TEP) based on chondrocytes of various genesis in the form of 3D structures (chondrospheres) after subcutaneous implantation in immunodeficient Balb/c Nude mice and investigate its biodistribution profile. Initially, chondrospheres based on chondrocytes and chondrocytes from differentiated induced pluripotent stem cells (iPSCs), including lines with a knockout of the β2m gene, were implanted. The animals were monitored for nine months. Further, after euthanasia, organ and tissue samples were obtained for histological analysis, evaluation of the viability of the implant, its integration and biodistribution research by PCR. Chondrospheres from differentiated iPSCs derivatives of both types successfully integrated into the surrounding tissues in the inoculation zones and formed cartilage tissue. In the samples near the implantation zone of the experimental groups of animals, no human DNA was detected. Human DNA was found in the samples of organs of the control groups (introduction of MDA231 and mesenchymal stem cells). Thus, three and nine months after implantation, the studied TEP samples demonstrated the absence of biodistribution to other tissues and organs of mice, which indicates the safety of the drug being developed.
Keywords
About the Authors
P. A. GolubinskayaRussian Federation
Polina A. Golubinskaya, Cand. Sci. (Med.)
119435, Moscow, Malaya Pirogovskaya Str., 1a
A. S. Pikina
Russian Federation
Arina S. Pikina
119435, Moscow, Malaya Pirogovskaya Str., 1a
E. S. Ruchko
Russian Federation
Eugene S. Ruchko
119435, Moscow, Malaya Pirogovskaya Str., 1a
E. V. Kozhenevskaya
Russian Federation
Evgeniya V. Kozhenevskaya
603022, Nizhny Novgorod, Gagarina Ave., 23
A. Dz. Pospelov
Russian Federation
Anton Dz. Pospelov
603022, Nizhny Novgorod, Gagarina Ave., 23
A. A. Babaev
Russian Federation
Aleksej A. Babaev, Cand. Sci. (Biol.)
603022, Nizhny Novgorod, Gagarina Ave., 23
V. A. Ivanov
Russian Federation
Viktor A. Ivanov
119435, Moscow, Malaya Pirogovskaya Str., 1a
Ju. A. Bespyatykh
Russian Federation
Julia A. Bespyatykh, Cand. Sci. (Biol.)
119435, Moscow, Malaya Pirogovskaya Str., 1a
L. S. Shnayder
Russian Federation
Lev S. Shnayder, Cand. Sci. (Med.)
111123, Moscow, Novogireyevskaya Str., 1, Building 1
A. V. Eremeev
Russian Federation
Artem V. Eremeev, Cand. Sci. (Biol.)
119435, Moscow, Malaya Pirogovskaya Str., 1a
References
1. Bogomiakova M.E., Eremeev A.V., Lagarkova M.A. «Svoy sredi chuzhikh»: mozhno li sozdat' gipoimmunogennye linii plyuripotentnykh stvolovykh kletok? [At home among strangers: Is it possible to create hypoimmunogenic pluripotent stem cell lines?]. Molekulyarnaya biologiya [Molecular Biology]. 2019;53(5):75–740. (In Russian). DOI: 10.1134/S0026898419050045
2. Pikina A.S., Golubinskaya P.A., Ruchko E.S., Kozhenevskaya E.V., Pospelov A.D., Babaev A.A., Eremeev A.V. Issledovanie bioraspredeleniya biomeditsinskogo kletochnogo produkta na osnove khondrotsitov cheloveka pri implantatsii mysham linii BALB/C Nude [Assessing biodistribution of biomedical cellular product based on human chondrocytes following implantation to BALB/C nude mic]. Meditsina ekstremal'nykh situatsiy [Extreme Medicine]. 2023;4:123–130. (In Russian). DOI: 10.47183/mes.2023.057
3. Abe K., Yamashita A., Morioka M., Horike N., Takei Y., Koyamatsu S., Okita K., Matsuda S., Tsumaki N. Engraftment of allogeneic iPS cell-derived cartilage organoid in a primate model of articular cartilage defect. Nat. Commun. 2023;14(1):804. DOI: 10.1038/s41467-023-36408-0
4. Apelgren P., Amoroso M., Lindahl A., Brantsing C., Rotter N., Gatenholm P., Kölby L. Chondrocytes and stem cells in 3D-bioprinted structures create human cartilage in vivo. PLoS One. 2017;12(12): e0189428. DOI: 10.1371/journal.pone.0189428
5. Bogomiakova M.E., Sekretova E.K., Anufrieva K.S., Khabarova P.O., Kazakova A.N., Bobrovsky P.A., Grigoryeva T.V., Eremeev A.V., Lebedeva O.S., Bogomazova A.N., Lagarkova M.A. iPSC derived cells lack immune tolerance to autologous NK cells due to imbalance in ligands for activating and inhibitory NK-cell receptors. Stem Cell Res Ther. 2023;14(1):77. DOI: 10.1186/s13287-023-03308-5
6. Bogomiakova M.E., Sekretova E.K., Eremeev A.V., Shuvalova L.D., Bobrovsky P.A., Zerkalenkova E.A., Lebedeva O.S., Lagarkova M.A. Derivation of induced pluripotent stem cells line (RCPCMi007-A-1) with inactivation of the beta-2-microglobulin gene by CRISPR/Cas9 genome editing. Stem Cell Res. 2021;55:102451. DOI: 10.1016/j.scr.2021.102451
7. Delanois R.E., Etcheson J.I., Sodhi N., Henn R.F., Gwam C.U., George N.E., Mont M.A. Biologic therapies for the treatment of knee osteoarthritis. J. Arthroplasty. 2019;34(4):801–813. DOI: 10.1016/j.arth.2018.12.001
8. Eremeev A., Belikova L., Ruchko E., Volovikov E., Zubkova O., Emelin A., Deev R., Lebedeva O., Bogomazova A., Lagarkova M. Brain organoid generation from induced pluripotent stem cells in home-made mini bioreactors. J. Vis. Exp. 2021;178. DOI: 10.3791/62987
9. Eremeev A., Pikina A., Ruchko Y., Bogomazova A. Clinical potential of cellular material sources in the generation of iPSC-based products for the regeneration of articular cartilage. Int. J. Mol. Sci. 2023;24(19):14408. DOI: 10.3390/ijms241914408
10. Fickert S., Gerwien P., Helmert B., Schattenberg T., Weckbach S., Kaszkin-Bettag M., Lehmann L. O-neyear clinical and radiological results of a prospective, investigator-initiated trial examining a novel, purely autologous 3-dimensional autologous chondrocyte transplantation product in the knee. Cartilage. 2012;3(1):27–42. DOI: 10.1177/1947603511417616
11. European Medicines Agency. Spherox: Spheroids of human autologous matrix-associated chondrocytes. URL: https://www.ema.europa.eu/en/medicines/human/EPAR/spherox
12. Hwang J.J., Choi J., Rim Y.A., Nam Y., Ju J.H. Application of induced pluripotent stem cells for disease modeling and 3d model construction: Focus on osteoarthritis. Cells. 2021;10(11):3032. DOI: 10.3390/cells10113032
13. Jiang Y., Tuan R.S. Bioactivity of human adult stem cells and functional relevance of stem cell-derived extracellular matrix in chondrogenesis. Stem Cell Res. Ther. 2023;14(1):160. DOI: 10.1186/s13287-023-03392-7
14. Kawata M., Mori D., Kanke K., Hojo H., Ohba S., Chung U.I, Yano F., Masaki H., Otsu M., Nakauchi H., Tanaka S., Saito T. Simple and robust differentiation of human pluripotent stem cells toward chondrocytes by two small-molecule compounds. Stem Cell Reports. 2019;13(3):530–544. DOI: 10.1016/j.stemcr.2019.07.012
15. Kreuz P.C., Kalkreuth R.H., Niemeyer P., Uhl M., Erggelet C. Long-term clinical and MRI results of matrix-assisted autologous chondrocyte implantation for articular cartilage defects of the knee. Cartilage. 2019;10(3):305–313. DOI: 10.1177/1947603518756463
16. Madrid M., Sumen C., Aivio S., Saklayen N. Autologous induced pluripotent stem cell–based cell therapies: Promise, progress, and challenges. Curr. Protoc. 2021;1(3):e88. DOI: 10.1002/cpz1.88
17. Murphy C., Mobasheri A., Táncos Z., Kobolák J., Dinnyés A. The potency of induced pluripotent stem cells in cartilage regeneration and osteoarthritis treatment. Adv. Exp. Med. Biol. 2018:1079:55–68. DOI: 10.1007/5584_2017_141
18. Nakamura A., Murata D., Fujimoto R., Tamaki S., Nagata S., Ikeya M., Toguchida J., Nakayama K. Bio-3D printing iPSC-derived human chondrocytes for articular cartilage regeneration. Biofabrication. 2021;13(4). DOI: 10.1088/1758-5090/ac1c99
19. Niemeyer P., Laute V., Zinser W., John T., Becher C., Diehl P., Kolombe T., Fay J., Siebold R., Fickert S. Safety and efficacy of matrix-associated autologous chondrocyte implantation with spheroid technology is independent of spheroid dose after 4 years. Knee Surg. Sports Traumatol. Arthrosc. 2020;28(4):1130–1143. DOI: 10.1007/s00167-019-05786-8
20. Price A.J., Alvand A., Troelsen A., Katz J.N., Hooper G., Gray A., Carr A., Beard D. Knee replacement. Lancet. 2018;392(10158):1672–1682. DOI: 10.1016/S0140-6736(18)32344-4
21. Riedl M., Vadalà G., Papalia R., Denaro V. Threedimensional, scaffold-free, autologous chondrocyte transplantation: A systematic review. Orthop. J. Sports Med. 2020;8(9):2325967120951152 DOI: 10.1177/2325967120951152
22. Shah S.S., Mithoefer K. Scientific developments and clinical applications utilizing chondrons and chondrocytes with matrix for cartilage repair. Cartilage. 2021;13(1_suppl):1195S–1205S. DOI: 10.1177/1947603520968884
23. Yamanaka S. Pluripotent stem cell-based cell therapy — promise and challenges. Cell Stem Cell. 2020;27(4):523–531. DOI: 10.1016/j.stem.2020.09.014
24. Yamashita A., Morioka M., Yahara Y., Okada M., Kobayashi T., Kuriyama S., Matsuda S., Tsumaki N. Generation of scaffoldless hyaline cartilaginous tissue from human iPSCs. Stem Cell Reports. 2015;4(3):404–418. DOI: 10.1016/j.stemcr.2015.01.016
25. Zscharnack M., Krause C., Aust G., Thümmler C., Peinemann F., Keller T., Smink J.J., Holland H., Somerson J.S., Knauer J., Schulz R.M., Lehmann J. Preclinical good laboratory practice-compliant safety study to evaluate biodistribution and tumorigenicity of a cartilage advanced therapy medicinal product (ATMP). J. Transl. Med. 2015;13:160. DOI: 10.1186/s12967-015-0517-x
Review
For citations:
Golubinskaya P.A., Pikina A.S., Ruchko E.S., Kozhenevskaya E.V., Pospelov A.D., Babaev A.A., Ivanov V.A., Bespyatykh J.A., Shnayder L.S., Eremeev A.V. Study of the Biodistribution of a Tissue-Engineered Product Based on Human Chondrocytes of Various Sources After Implantation into Balb/c Nude Mice. Journal Biomed. 2024;20(3E):160-175. (In Russ.) https://doi.org/10.33647/2713-0428-20-3E-160-175