Preview

Journal Biomed

Advanced search

Evaluation of the Effect of Ethyl Carbamate on CD21+-Spleen Cells

https://doi.org/10.33647/2074-5982-20-4-78-86

Abstract

The spleen is an organ of the immune system that is involved in the B-cell immune response. In certain areas of the spleen, naive and mature B lymphocytes are localized. Upon a decrease in B cells in the bloodstream, the spleen replenishes their number. In this organ, antibodies are formed, which are an important link in the humoral immune response. The conducted experiment revealed that a single administration of ethyl carbamate causes changes in both the lungs and the spleen. An analysis of histological sections showed that, six months after the receipt of ethyl carbamate, the spleen showed signs of white pulp involution, along with a decrease in the number of CD21+ cells. This indicates an inhibition of the B-cell immune response and a probable decrease in the humoral immune response.

About the Author

E S. Samakina
I.N. Ulianov Chuvash State University
Russian Federation

Ekaterina S. Samakina

428015, Chuvash Republic, Cheboksary, Moskovsky Ave., 15



References

1. Arlashkina O.M., Struchko G.Ju., Merkulova L.M., Mihajlova M.N. Morfologicheskie kharakteristiki beloy pul'py i dendritnykh kletok selezenki pri eksperimental'nom kantserogeneze [Morphological characteristics of the white pulp and dendritic cells of the spleen in experimental carcinogenesis]. Immunology. 2019;40(2):7–22. (In Russian). DOI: 10.24411/0206-4952-2019-12003

2. Bobrysheva I.V. Morfologicheskaya reaktivnost' selezenki krys razlichnykh vozrastnykh periodov pri immunosupressii [Morphological reactivity of the rat spleen of different age periods in immunosuppression]. Journal of Siberian Medical Sciences. 2015;6:53. (In Russian).

3. Volkov V.P. Novyy algoritm morfometricheskoy otsenki funktsional'noy immunomorfologii selezenki [New algorithm of the morphometric assessment of functional immunomorphology of the spleen] Universum: meditsina i farmakologiya [Universum: medicine and pharmacology]. 2015;5- 6(18). (In Russian).

4. Grivtsova L.Yu., Glukhov E.V., Chulkova S.V., Beznos O.A., Fomina A.V., Nered S.N., Stilidy I.S., Tupitsyn N.N. Osobennosti B-kletochnogo zvena immuniteta u bol'nykh rakom zheludka posle splenektomii. [Role of splenectomy in peculiarities of peripheral blood B-cell subpopulations in patients with gastric cancer]. Immunology. 2014;35(5):279– 286. (In Russian).

5. Levenets S.V., Sadovaya A.Yu., Savenok M.A. Morfofunktsional'nye izmeneniya pokazateley selezenki pri vozdeystvii razlichnykh faktorov vneshney i vnutrenney sredy [Morphofunctional changes of spleen indicants under the influence of different external and internal environment factors]. Vestnik Luganskogo gosudarstvennogo pedagogicheskogo universiteta. Biologiya. Meditsina. Khimiya [Bulletin of Lugansk State Pedagogical University. Biology. Medicine. Chemistry]. 2021;2(66):47–53. (In Russian).

6. Lushova A.A., Zheremyan E.A., Astakhova E.A., Spiridonova A.B., Byazrova M.G., Filatov A.V Subpopulyatsii B-limfotsitov: funktsii i molekulyarnye markery [B-lymphocyte subsets: Functions and molecular markers]. Immunology. 2019;40(6):63–75. (In Russian). DOI: 10.24411/02064952-2019-16009

7. Toptygina A.P. B-kletki [B-cells]. Moscow: MAKS Press Publ., 2023:44–45. (InRussian).

8. Khaidukov S.V., Zurochka A.V. Mnogotsvetnyy tsitometricheskiy analiz. Identifikatsiya subpopulyatsiy B-kletok [Multicolor cytometric analysis. Identification of B-cell subpopulations]. Russian Journal of Immunology. 2007;1(3–4(10)):220–228. (In Russian).

9. Chulkova S.V., Stilidi I.S., Glukhov E.V., Grivtsova L.Yu., Nered S.N., Tupitsyn N.N. Selezenka — perifericheskiy organ immunnoy sistemy. Vliyanie splenektomii na immunnyy status [The spleen as a peripheral immunity organ. Splenectomy effect on the immunity status]. Vestnik RONTs im. N.N. Blokhina RAMN [Bulletin of the Russian National Research Center named after N.N. Blokhin of RAMS]. 2014;25(1–2(94)):21–25. (In Russian).

10. Carrillo-Ballesteros F.J., Oregon-Romero E., FrancoTopete R.A., Govea-Camacho L.H., Cruz A., MuñozValle J.F., Bustos-Rodríguez F.J., Pereira-Suárez A.L., Palafox-Sánchez C.A. B-cell activating factor receptor expression is associated with germinal center B-cell maintenance. Exp. Ther. Med. 2019;17(3):2053–2060. DOI: 10.3892/etm.2019.7172

11. Del Nagro C.J. B cell co-receptors CD19 and CD21 in tolerance and auto-immunity. University of California, 2005.

12. Ghosh D., Stumhofer J.S. The spleen: “epicenter” in malaria infection and immunity. J. Leukoc. Biol. 2021;110(4):753–769. DOI: 10.1002/JLB.4RI1020-713R

13. Gjertsson I., McGrath S., Grimstad K., Jonsson C.A., Camponeschi A., Thorarinsdottir K., Mårtensson I.L. A close-up on the expanding landscape of CD21-/ low B cells in humans. Clin. Exp. Immunol. 2022;210(3):217–229. DOI: 10.1093/cei/uxac103

14. Golub R., Tan J., Watanabe T., Brendolan A. Origin and immunological functions of spleen stromal cells. Trends Immunol. 2018;39(6):503–514. DOI: 10.1016/j.it.2018.02.007

15. Johnson J.L., Rosenthal R.L., Knox J.J., Myles A., Naradikian M.S., Madej J., Kostiv M., Rosenfeld A.M., Meng W., Christensen S.R., Hensley S.E., Yewdell J., Canaday D.H., Zhu J., McDermott A.B., Dori Y., Itkin M., Wherry E.J., Pardi N., Weissman D., Naji A., Prak E.T.L., Betts M.R., Cancro M.P. The transcription factor T-bet resolves memory B cell subsets with distinct tissue distributions and antibody specificities in mice and humans. Immunity. 2020;52(5):842–855. e6. DOI: 10.1016/j.immuni.2020.03.020

16. Kashimura M. The human spleen as the center of the blood defense system. Int. J. Hematol. 2020;112(2):147– 158. DOI: 10.1007/s12185-020-02912-y

17. Oleinika K., Mauri C., Blair P.A. B cell activation and B cell tolerance. The Autoimmune Diseases (Sixth Edition). 2020:171–187. DOI: 10.1016/B978-0-12-812102-3.00009-9

18. Prokopec K.E., Georgoudaki A.M., Sohn S., Wermeling F., Grönlund H., Lindh E., Carroll M.C., Karlsson M.C. Cutting edge: Marginal zone macrophages regulate antigen transport by B cells to the follicle in the spleen via CD21. J. Immunol. 2016;197(6):2063–2068. DOI: 10.4049/jimmunol.1502282

19. Sozio F., Schioppa T., Sozzani S., Del Prete A. Urethane-induced lung carcinogenesis. Methods Cell Biol. 2021;163:45–57. DOI: 10.1016/bs.mcb.2020.09.005

20. Stathopoulos G.T., Sherrill T.P., Cheng D.S., Scoggins R.M., Han W., Polosukhin V.V., Connelly L., Yull F.E., Fingleton B., Blackwell T.S. Epithelial NF-kappaB activation promotes urethane-induced lung carcinogenesis. Proc. Natl Acad. Sci. USA. 2007;104(47):18514–18519. DOI: 10.1073/pnas.0705316104

21. Thompson P.A., Khatami M., Baglole C.J., Sun J., Harris S.A., Moon E.Y., Al-Mulla F., Al-Temaimi R., Brown D.G., Colacci A., Mondello C., Raju J., Ryan E.P., Woodrick J., Scovassi A.I., Singh N., Vaccari M., Roy R., Forte S., Memeo L., Salem H.K., Amedei A., Hamid R.A., Lowe L., Guarnieri T., Bisson W.H. Environmental immune disruptors, inflammation and cancer risk. Carcinogenesis. 2015;36 Suppl. 1(Suppl. 1):S232–S253. DOI: 10.1093/carcin/bgv038

22. Thorarinsdottir K., Camponeschi A., Gjertsson I., Mårtensson I.L. CD21-/low B cells: A snapshot of a unique B cell subset in health and disease. Scand. J. Immunol. 2015;82(3):254–261. DOI: 10.1111/sji.12339

23. Xu C., Zhou L., Lu L., Chen T., Wei S., Lin X., Lian X. Inflammation has a role in urethane-induced lung cancer in C57BL/6J mice. Mol. Med. Rep. 2016;14(4):3323–3328. DOI: 10.3892/mmr.2016.5661


Review

For citations:


Samakina E.S. Evaluation of the Effect of Ethyl Carbamate on CD21+-Spleen Cells. Journal Biomed. 2024;20(4):78-86. (In Russ.) https://doi.org/10.33647/2074-5982-20-4-78-86

Views: 143


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2074-5982 (Print)
ISSN 2713-0428 (Online)