Altered Glycosylation of Subclass IgG1 Recombinant Human Immunoglobulin by Selecting Culture Conditions for Producers and Additives
https://doi.org/10.33647/2074-5982-21-2-37-48
Abstract
The possibility to alter the glycosylation profile is an important prerequisite for the development of production technologies of therapeutic recombinant immunoglobulins. Glycans affect various effector functions of the antibody, such as antibody-dependent cell-mediated cytotoxicity (ADCC), complement-dependent cytotoxicity (CDC), and the drug half-life. The possibility to achieve the required glycosylation profile of a therapeutic antibody by optimizing cultivation conditions will facilitate both the creation of more effective drugs and accelerated development of biosimilars. The conducted study found that an increase in the cultivation duration leads to a decrease in the galactose content. The addition of the EM-N-glycan regulator-2 afucose regulator (Eminence, China) led to an increase in the content of afucosylated glycans. The co-expression of the Fut8 enzyme led to an increase in mannose residues. Various approaches to regulation of fucose, mannose, and galactose contents during biosynthesis of IgG1 therapeutic antibody were tested.
About the Authors
S. S. TimonovaRussian Federation
Sofia S. Timonova, Cand. Sci. (Biol.)
601125, Vladimir Region, Petushinsky District, Volginsky Settlement, Vladimirskaya Str., 14
A. A. Polupanova
Russian Federation
Anna A. Polupanova
601125, Vladimir Region, Petushinsky District, Volginsky Settlement, Vladimirskaya Str., 14
I. A. Kirik
Russian Federation
Inessa A. Kirik, Cand. Sci. (Biol.)
601125, Vladimir Region, Petushinsky District, Volginsky Settlement, Vladimirskaya Str., 14
O. A. Karpunina
Russian Federation
Olga A. Karpunina
601125, Vladimir Region, Petushinsky District, Volginsky Settlement, Vladimirskaya Str., 14
A. A. Fedorov
Russian Federation
Alexander A. Fedorov
601125, Vladimir Region, Petushinsky District, Volginsky Settlement, Vladimirskaya Str., 14
E. V. Zubareva
Russian Federation
Ekaterina V. Zubareva
601125, Vladimir Region, Petushinsky District, Volginsky Settlement, Vladimirskaya Str., 14
V. V. Myagkova
China
Vera V. Myagkova
Jiangsu, Suzhou Industrial Park, Sangtian Str., 218, 3F, 24
A. A. Piskunov
Russian Federation
Alexander A. Piskunov, Cand. Sci. (Biol.)
601125, Vladimir Region, Petushinsky District, Volginsky Settlement, Vladimirskaya Str., 14
R. A. Khamitov
Russian Federation
Ravil A. Khamitov, Dr. Sci. (Med.)
601125, Vladimir Region, Petushinsky District, Volginsky Settlement, Vladimirskaya Str., 14
References
1. Guzov E.A., Ciruleva M.A., Iserkapov A.V., Tyukova A.P., Kazin V.N., Kolyshkin V.M., Ignat'ev V.G. Vliyanie glyukozamina i ionov medi na formirovanie profilya glikozilirovaniya monoklonal'nyh antitel v kletkah CHO [The effect of glucosamine and copper ions on the formation of the glycosylation profile of monoclonal antibodies in CHO cells]. Biotechnology. 2023;39(2):3–9. (In Russian). DOI: 10.56304/S0234275823020035.
2. Dorohov Yu.L., Sheshukova E.V., Kosobokova E.N., Shindyapina A.V., Kosorukov V.S., Komarova T.V. Rol' uglevodnyh ostatkov v funkcionirovanii immunoglobulina G cheloveka i terapevticheskih monoklonal'nyh antitel [Role of carbohydrate residues in the function of human immunoglobulin G and therapeutic monoclonal antibodies]. Biochemy. 2016;81(8):1069–1090. (In Russian).
3. Timonova S.S., Smolova K.A., Zaripova D.T., Pantyushenko M.S., Koroleva M.A., Anisimov R.L., Hamitov R.A., Piskunov A.A., Bade V.N. Uvelichenie produktivnosti kletochnoj linii-producenta arilsul'fatazy B za schet koekspressii formilglicin generiruyushchego fermenta] [Increased productivity of the aryl sulfatase B producing cell line due to co-expression of the formylglycine-generating enzyme]. Biological products. Prevention, diagnosis, treatment. 2022;22(1):80–93. (In Russian). DOI: 10.56304/S0234275824010113.
4. Abès R., Teillaud J.L. Impact of Glycosylation on Effector Functions of Therapeutic IgG. Pharmaceuticals (Basel). 2010;3(1):146–157.
5. Aoyama M., Hashii N., Tsukimura W., Osumi K., Harazono A., Tada M., Kiyoshi M., Matsuda A., IshiiWatabe A. Effects of terminal galactose residues in mannose α1–6 arm of Fc-glycan on the effector functions of therapeutic monoclonal antibodies. MAbs. 2019;11(5):826–836.
6. Barolo L., Abbriano R.M., Commault A.S., George J., Kahlke T., Fabris M., Padula M.P., Lopez A., Ralph P.J., Pernice M. Perspectives for Glyco-Engineering of Recombinant Biopharmaceuticals from Microalgae. Cells. 2020;9(3):633.
7. Ehret J., Zimmermann M., Eichhorn T., Zimmer A. Impact of cell culture media additives on IgG glycosylation produced in Chinese hamster ovary cells. Biotechnol Bioeng. 2019;116(4):816–830.
8. Goetze A.M., Liu Y.D., Zhang Z., Shah B., Lee E., Bondarenko P.V., Flynn G.C. High-mannose glycans on the Fc region of therapeutic IgG antibodies increase serum clearance in humans. Glycobiology. 2011;21(7):949–959.
9. Higel F., Seidl A., Sörgel F., Friess W. N-glycosylation heterogeneity and the influence on structure, function and pharmacokinetics of monoclonal antibodies and Fc fusion proteins. Eur. J. Pharm. Biopharm. 2016;100:94–100.
10. Hossler P., Khattak S.F., Li Z.J. Optimal and consistent protein glycosylation in mammalian cell culture. Glycobiology. 2009;19(9):936–949.
11. Loebrich S., Clark E., Ladd K., Takahashi S., BrousseauA., Kitchener S., Herbst R., Ryll T. Comprehensive manipulation of glycosylation profiles across development scales. MAbs. 2019;11(2):335–349.
12. Peipp M., Lammerts van Bueren J.J., SchneiderMerck T., Bleeker W.W., Dechant M., Beyer T., Repp R., van Berkel P.H., Vink T., van de Winkel J.G., Parren P.W., Valerius T. Antibody fucosylation differentially impacts cytotoxicity mediated by NK and PMN effector cells. Blood. 2008;112(6):2390–2399.
13. Process for manipulating the level of glycan content of a glycoprotein. Leiske D.R., Trentalange M.T. Patent US 10,167,492 B2, 01.01.2019. Application No.: 15/529,950 from 01.12.2015.
14. Process of obtaining glycoprotein composition with increased afucosylation content. Makkapati S., Nikam V.S., Subrahmanyam S. Patent WO 2013/114165 A1, 08.08.2013. International Application No.: PСT/ IB2012/057091 from 08.12.2012.
15. Reusch D., Tejada M.L. Fc glycans of therapeutic antibodies as critical quality attributes. Glycobiology. 2015;25(12):1325–1334.
16. Ryman J.T., Meibohm B. Pharmacokinetics of Monoclonal Antibodies. CPT Pharmacometrics Syst. Pharmacol. 2017;6(9):576–588.
17. Schjoldager K.T., Narimatsu Y., Joshi H.J., Clausen H. Global view of human protein glycosylation pathways and functions. Nature Reviews Molecular Cell Biology. 2020;21(12):729–749.
18. Shalel L.S., Aharonovitz O., Maor-Shoshani A., Abraham G., Kenett D., Aloni Y. An efficient method to control high mannose and core fucose levels in glycosylated antibody production using deoxymannojirimycin. Journal of Biotechnology. 2018;276-277:54–62.
19. Vlasak J., Ionescu R. Heterogeneity of Monoclonal Antibodies Revealed by Charge-Sensitive Methods. Current Pharmaceutical Biotechnology. 2008;9(6):468–481.
20. Yang G., Wang Q., Chen L., Betenbaugh M.J., Zhang H. Glycoproteomic Characterization of FUT8 Knock-Out CHO Cells Reveals Roles of FUT8 in the Glycosylation. Frontiers in Chemistry. 2021;9:755238.
21. Zhang L., Luo S., Zhang B. Glycan analysis of therapeutic glycoproteins. MAbs. 2016;8(2):205–215.
22. Zinc supplementation for decreasing galactosylation of recombinant glycoproteins. Gadgil M.C., Prabhu A.J., Gadre, R.V. Patent WO 2019/077628 A1, 25.04.2019. International Application No.: PСT/IN2018/050665 from 16.10.2028.
Review
For citations:
Timonova S.S., Polupanova A.A., Kirik I.A., Karpunina O.A., Fedorov A.A., Zubareva E.V., Myagkova V.V., Piskunov A.A., Khamitov R.A. Altered Glycosylation of Subclass IgG1 Recombinant Human Immunoglobulin by Selecting Culture Conditions for Producers and Additives. Journal Biomed. 2025;21(2):37-48. (In Russ.) https://doi.org/10.33647/2074-5982-21-2-37-48