.Biomodeling the Inflammatory Amyloid Cascade as the Basis of Alzheimer's Disease in Old C57BL/6J Mic
https://doi.org/10.33647/2074-5982-21-4-96-100
Abstract
In this work, the effect of chronic intranasal administration of S100A9 proinflammatory protein oligomers, inducing the inflammatory-amyloid cascade, in 24-month-old C57BL/6J mice on the formation and preservation of long-term spatial memory, Th gene expression, as well as dopamine content and metabolism in the hippocampus, frontal cortex, and cerebellum was studied. Compared to the control, experimental animals showed an impairment of the long-term memory on days 3 and 4 of training and testing session in a Morris water maze. Th expression increased significantly in the cerebellum, while dopamine levels decreased significantly in the hippocampus. Thus, chronic intranasal administration of S100A9 oligomers to old animals contributes to the formation of pathological symptoms similar to Alzheimer's disease, thus showing potential as a model of this disease.
About the Authors
V. I. InokentevaRussian Federation
Victoria I. Inokenteva
125315, Moscow, Baltiyskaya Str., 8
M. A. Gruden
Russian Federation
Marina A. Gruden, Cand. Sci. (Chem.)
125315, Moscow, Baltiyskaya Str., 8
O. A. Solovieva
Russian Federation
Olga A. Solovieva
125315, Moscow, Baltiyskaya Str., 8
N. P. Mikhailova
Russian Federation
Nataliya P. Mikhailova
125315, Moscow, Baltiyskaya Str., 8
A. M. Ratmirov
Russian Federation
Alexander M. Ratmirov
125315, Moscow, Baltiyskaya Str., 8
Z. I. Storozheva
Russian Federation
Zinaida I. Storozheva, Dr. Sci. (Biol.)
125315, Moscow, Baltiyskaya Str., 8
References
1. Coleman P.D., Delvaux E., Kordower J.H., Boehringer A., Huseby C.J. Massive changes in gene expression and their cause(s) can be a unifying principle in the pa- thobiology of Alzheimer's disease. Alzheimers Dement. 2025;21(2):e14555. DOI: 10.1002/alz.14555.
2. Dahl M.J., Kulesza A., Werkle-Bergner M., Mather M. Declining locus coeruleus-dopaminergic and noradrenergic modulation of long-term memory in aging and Alzheimer's disease. Neurosci. Biobehav. Rev. 2023;153:105358. DOI: 10.1016/j.neubiorev.2023.105358.
3. Davydova T.V., Gruden M.A., Kudrin V.S., Narkevich V.B., Vetrile L.A., Zakharova I.A., Sewell R.D.E. Delayed Behavioral and Neurochemical Effects of Anti-Glutamate Antibodies in Aging C57BL/6 Mice. Bull. Exp. Biol. Med. 2021;171(1):19–22. DOI: 10.1007/s10517-021-05163-x.
4. Dorszewska J., Prendecki M., Oczkowska A., Dezor M., Kozubski W. Molecular Basis of Familial and Sporadic Alzheimer's Disease. Curr. Alzheimer Res. 2016;13(9):952–963. DOI: 10.2174/1567205013666160314150501.
5. Iashchishyn I.A., Gruden M.A., Moskalenko R.A., Davydova T.V., Wang C., Sewell R.D.E., Morozova- Roche L.A. Intranasally Administered S100A9 Amyloids Induced Cellular Stress, Amyloid Seeding, and Behavioral Impairment in Aged Mice. ACS Chem. Neurosci. 2018;9(6):1338–1348. DOI: 10.1021/acschemneuro.7b00512.
6. Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402–408. DOI: 10.1006/meth.2001.1262.
7. Liu E., Zhang Y., Wang J.Z. Updates in Alzheimer's disease: from basic research to diagnosis and therapies. Transl. Neurodegener. 2024;13(1):45. DOI: 10.1186/s40035-024-00432-x.
8. Puzzo D., Gulisano W., Palmeri A., Arancio O. Rodent models for Alzheimer's disease drug discovery. Expert Opin. Drug Discov. 2015;10(7):703–711. DOI: 10.1517/17460441.2015.1041913.
9. Sukhareva E.V., Kalinina T.S., Bulygina V.V., Dygalo N.N. Tyrosine hydroxylase of the brain and its regulation by glucocorticoids. Vavilov Journal of Genetics and Breeding. 2016;20(2):212–219. DOI: 10.18699/VJ16.156.
10. Szot P., Leverenz J.B., Peskind E.R., Kiyasu E., Rohde K., Miller M.A., Raskind M.A. Tyrosine hydroxylase and norepinephrine transporter mRNA expression in the locus coeruleus in Alzheimer's disease. Brain Res. Mol. Brain Res. 2000;84(1–2):135–140. DOI: 10.1016/s0169-328x(00)00168-6.
11. Szot P., White S.S., Greenup J.L., Leverenz J.B., Peskind E.R., Raskind M.A. Compensatory changes in the noradrenergic nervous system in the locus ceruleus and hippocampus of postmortem subjects with Alzheimer's disease and dementia with Lewy bodies. J. Neurosci. 2006;26(2):467–478. DOI: 10.1523/JNEUROSCI.4265-05.2006.
12. Vorhees CV, Williams MT. Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat. Protoc. 2006;1(2):848–858. DOI: 10.1038/nprot.2006.116.
13. Wang C., Klechikov A.G., Gharibyan A.L., Wärmländer S.K., Jarvet J., Zhao L., Jia X., Narayana V.K., Shankar S.K., Olofsson A., Brännström T., Mu Y., Gräslund A., Morozova-Roche L.A. The role of pro-inflammatory S100A9 in Alzheimer's disease amyloid-neuroinflammatory cascade. Acta. Neuropathol. 2014;127(4):507–522. DOI: 10.1007/s00401-013-1208-4.
14. Watamura N., Kakiya N., Fujioka R., Kamano N., Takahashi M., Nilsson P., Saito T., Iwata N., Fujisawa S., Saido T.C. The dopaminergic system promotes neprilysin-mediated degradation of amyloid-β in the brain. Sci. Signal. 2024;17(848):eadk1822. DOI: 10.1126/scisignal.adk1822.
Review
For citations:
Inokenteva V.I., Gruden M.A., Solovieva O.A., Mikhailova N.P., Ratmirov A.M., Storozheva Z.I. .Biomodeling the Inflammatory Amyloid Cascade as the Basis of Alzheimer's Disease in Old C57BL/6J Mic. Journal Biomed. 2025;21(4):96-100. (In Russ.) https://doi.org/10.33647/2074-5982-21-4-96-100
JATS XML



























