Exhausting Physical Exercise Causes a Multiple Increase in the Transcription of HMGB1 Gene in Mini Pigs’ Lymphocytes
https://doi.org/10.33647/2074-5982-18-1-22-31
Abstract
It is shown for the first time that debilitating physical activity causes a short-term multiple increase in the transcription of the HMGB1 gene in the cells of the leukocyte blood fraction (lymphocytes) of mini pigs and a statistically significant increase in the level of leukocytes. At the same time, other morphological parameters of the blood remain unchanged due to an increase in the number of neutrophils in the post-exercise period (up to 6 hours inclusive). Neutrophils can be considered both as a marker for investigating the effect of limiting physical activity on the processes associated with recovery and as a potential damaging factor. Lymphocytes are presumably the source of HMGB1 during short-term debilitating physical activity. The revealed increase in HMGB1 gene transcription is of a compensatory nature and is aimed at restoring the HMGB1 lymphocytic protein pool in the post-exercise period. Leukocyte HMGB1 can play the role of a damaging factor or a regeneration factor depending on the type and duration of physical activity, given its specific role in accelerating the formation of new muscle fibers, increasing their size and vascularization of muscle tissue.
Keywords
About the Authors
V. N. KarkischenkoRussian Federation
Vladislav N. Karkischenko, Dr. Sci. (Med.), Prof.
143442, Moscow Region, Krasnogorsk District, Svetlye Gory Village, 1
I. A. Pomytkin
Russian Federation
Igor A. Pomytkin, Cand. Sci. (Chem.)
143442, Moscow Region, Krasnogorsk District, Svetlye Gory Village, 1
N. V. Petrova
Russian Federation
Nataliya V. Petrova
143442, Moscow Region, Krasnogorsk District, Svetlye Gory Village, 1
N. V. Stankova
Russian Federation
Nataliia V. Stankova, Cand. Sci. (Biol.)
143442, Moscow Region, Krasnogorsk District, Svetlye Gory Village, 1
O. V. Alimkina
Russian Federation
Oksana V. Alimkina
143442, Moscow Region, Krasnogorsk District, Svetlye Gory Village, 1
Yu. V. Fokin
Russian Federation
Yuriy V. Fokin, Cand. Sci. (Biol.)
143442, Moscow Region, Krasnogorsk District, Svetlye Gory Village, 1
A. M. Zubaliy
Russian Federation
Anastasiya M. Zubaliy
143442, Moscow Region, Krasnogorsk District, Svetlye Gory Village, 1
N. A. Laryushina
Russian Federation
Nadezhda A. Laryushina
143442, Moscow Region, Krasnogorsk District, Svetlye Gory Village, 1
I. A. Vasil’eva
Russian Federation
Irina A. Vasil’eva
143442, Moscow Region, Krasnogorsk District, Svetlye Gory Village, 1
References
1. Stankova N.V., Savina M.A. Nepryamoj submaksimal’nyj nagruzochnyj test PWC170 opredeleniya fizicheskoj rabotosposobnosti na svetlogorskix minisvin’yax Indirect submaximal load test PWC170 for determining physical performance on Svetlogorsk mini pigs. Biomedicina Journal Biomed. 2021;17(3E):89– 94. (In Russian). DOI: 10.33647/2713-0428-17-3E-89-94.
2. Shustov E.B., Fokin Yu.V., Kapanadze G.D., Berzin I.A., Stankova N.V., Alimkina O.V., Matveyenko E.L., Petrova N.V. Sezonnaya dinamika pokazatelej fizicheskoj rabotosposobnosti laboratornyx zhivotnyx Seasonal dynamics of indicators of physical performance of laboratory animals. Biomedicina Journal Biomed. 2016;1:66–73. (In Russian).
3. Behringer M., Kilian Y., Montag J., Geesmann B., Mester J. Plasma concentration of high-mobility group box 1 (HMGB1) after 100 drop to vertical jumps and after a 1200-km bicycle race. Res. Sports Med. 2016;24(2):119–129. DOI: 10.1080/15438627.2015.1126275.
4. Beiter T., Fragasso A., Hudemann J., Niess A.M., Simon P. Short-term treadmill running as a model for studying cell-free DNA kinetics in vivo. Clin. Chem. 2011;57(4):633–636. DOI: 10.1373/clinchem.2010.158030.
5. Bekos C., Zimmermann M., Unger L., Janik S., Hacker P., Mitterbauer A., Koller M., Fritz R., Gäbler C., Kessler M., Nickl S., Didcock J., Altmann P., Haider T., Roth G., Klepetko W., Ankersmit H.J., Moser B. Non-professional marathon running: RAGE axis and ST2 family changes in relation to open-window effect, inflammation and renal function. Sci. Rep. 2016;6:32315. DOI: 10.1038/srep32315.
6. Boyum A. Separation of leukocytes from blood and bone marrow. Scand. J. Clin. Lab. Investig. 1968;21(Suppl 97):1–9.
7. Campana L., Santarella F., Esposito A., Maugeri N., Rigamonti E., Monno A., Canu T., Del Maschio A., Bianchi M.E., Manfredi A.A., Rovere-Querini P. Leukocyte HMGB1 is required for vessel remodeling in regenerating muscles. J. Immunol. 2014;192(11):5257– 5264. DOI: 10.4049/jimmunol.1300938.
8. De Mori R., Straino S., Di Carlo A., Mangoni A., Pompilio G., Palumbo R., Bianchi M.E., Capogrossi M.C., Germani A. Multiple effects of high mobility group box protein 1 in skeletal muscle regeneration. Arterioscler. Thromb. Vasc. Biol. 2007;27(11):2377–2383. DOI: 10.1161/ATVBAHA.107.153429.
9. Dormoy-Raclet V., Cammas A., Celona B., Lian X.J., van der Giessen K., Zivojnovic M., Brunelli S., Riuzzi F., Sorci G., Wilhelm B.T., Di Marco S., Donato R., Bianchi M.E., Gallouzi I.E. HuR and miR-1192 regulate myogenesis by modulating the translation of HMGB1 mRNA. Nat. Commun. 2013;4:2388. DOI: 10.1038/ncomms3388.
10. Giallauria F., Cirillo P., D’agostino M., Petrillo G., Vitelli A., Pacileo M., Angri V., Chiariello M., Vigorito C. Effects of exercise training on high-mobility group box-1 levels after acute myocardial infarction. J. Card. Fail. 2011;17(2):108–114. DOI: 10.1016/j.cardfail.2010.09.001.
11. Giallauria F., Gentile M., Chiodini P., Berrino F., Mattiello A., Maresca L., Vitelli A., Mancini M., Grieco A., Lucci R., Torella G., Panico S., Vigorito C. Exercise training reduces high mobility group box-1 protein levels in women with breast cancer: findings from the DIANA-5 study. Monaldi Arch. Chest Dis. 2014;82(2):61–67. DOI: 10.4081/monaldi.2014.45.
12. Goh J., Behringer M. Exercise alarms the immune system: A HMGB1 perspective. Cytokine. 2018;110:222– 225. DOI: 10.1016/j.cyto.2018.06.031.
13. Kang R., Chen R., Zhang Q., Hou W., Wu S., Cao L., Huang J., Yu Y., Fan X.G., Yan Z., Sun X., Wang H., Wang Q., Tsung A., Billiar T.R., Zeh H.J. 3rd, Lotze M.T., Tang D. HMGB1 in health and disease. Mol. Aspects Med. 2014;40:1–116.
14. Lee G., Espirito Santo A.I., Zwingenberger S., Cai L., Vogl T., Feldmann M., Horwood N.J., Chan J.K., Nanchahal J. Fully reduced HMGB1 accelerates the regeneration of multiple tissues by transitioning stem cells to GAlert. Proc. Natl Acad. Sci. USA. 2018;115(19):E4463–E4472. DOI: 10.1073/pnas.1802893115.
15. Riuzzi F., Sorci G., Sagheddu R., Chiappalupi S., Salvadori L., Donato R. RAGE in the pathophysiology of skeletal muscle. J. Cachexia Sarcopenia Muscle. 2018;9(7):1213–1234. DOI: 10.1002/jcsm.12350.
16. Sorci G., Riuzzi F., Arcuri C., Giambanco I., Donato R. Amphoterin stimulates myogenesis and counteracts the antimyogenic factors basic fibroblast growth factor and S100B via RAGE binding. Mol. Cell Biol. 2004;24(11):4880–4894. DOI: 10.1128/MCB.24.11.4880-4894.2004.
17. Tirone M., Tran N.L., Ceriotti C., Gorzanelli A., Canepari M., Bottinelli R., Raucci A., Di Maggio S., Santiago C., Mellado M., Saclier M., François S., Careccia G., He M., De Marchis F., Conti V., Ben Larbi S., Cuvellier S., Casalgrandi M., Preti A., Chazaud B., AlAbed Y., Messina G., Sitia G., Brunelli S., Bianchi M.E., Vénéreau E. High mobility group box 1 orchestrates tissue regeneration via CXCR4. J. Exp. Med. 2018;215(1):303–318. DOI: 10.1084/jem.20160217.
18. Wang H., Bloom O., Zhang M., Vishnubhakat J.M., Ombrellino M., Che J., Frazier A., Yang H., Ivanova S., Borovikova L., Manogue K.R., Faist E., Abraham E., Andersson J., Andersson U., Molina P.E., Abumrad N.N., Sama A., Tracey K.J. HMG-1 as a late mediator of endotoxin lethality in mice. Science. 1999;285(5425):248–251.
19. Zhang C., Gu X., Zhao G., Wang W., Shao J., Zhu J., Yuan T., Sun J., Nie D., Zhou Y. Extracel-lular HMGB-1 activates inflammatory signaling in tendon cells and tissues. Ther. Adv. Chronic Dis. 2020;11:20406223-20956429. DOI: 10.1177/2040622320956429.
20. Zhang J., Li F., Augi T., Williamson K.M., Onishi K., Hogan M.V., Neal M.D., Wang J.H. Platelet HMGB1 in platelet-rich plasma (PRP) promotes tendon wound healing. PLoS One. 2021;16(9):e0251166. DOI: 10.1371/journal.pone.0251166.
21. Zhao G., Zhang J., Nie D., Zhou Y., Li F., Onishi K., Billiar T., Wang J.H. HMGB1 mediates the development of tendinopathy due to mechanical overloading. PLoS One. 2019;14(9):e0222369. DOI: 10.1371/journal.pone.0222369.
Review
For citations:
Karkischenko V.N., Pomytkin I.A., Petrova N.V., Stankova N.V., Alimkina O.V., Fokin Yu.V., Zubaliy A.M., Laryushina N.A., Vasil’eva I.A. Exhausting Physical Exercise Causes a Multiple Increase in the Transcription of HMGB1 Gene in Mini Pigs’ Lymphocytes. Journal Biomed. 2022;18(1):22-31. (In Russ.) https://doi.org/10.33647/2074-5982-18-1-22-31