Central Mechanisms of Liposomated Forms of Acetylcholin and Insulin Revealed by an Analysis of Cognitive, Psycho-Emotional and Behavioral Parameters of Rats
https://doi.org/10.33647/2074-5982-18-1-32-55
Abstract
Central mechanisms of the liposomal forms of acetylcholine and insulin were studied during their transmucosal administration to rats. An analysis of the parameters of ultrasonic vocalization, free behavior and cognitive functions showed a direct effect of the tested substances on the main mechanisms of higher nervous activity. By means of complex biomedical testing, anxiolytic signs with a sedative component were established and confirmed, providing an improvement in the consolidation of memory and mental abilities. The most pronounced effect in the analysis of ultrasonic vocalization was observed for insulin, while the most informative ethological parameters of rats in the analysis of antidepressant properties in the maze test were established for acetylcholine. The administration of liposomal insulin and acetylcholine for 7 days increases the cognitive abilities of animals by more than two times and four times, respectively. This reflects high-frequency β- and γ-rhythms (above 20 Hz) of the hippocampus associated with the activity of intercalary neurons and pyramidal brain cells. Innovative targeted delivery of the drugs based on neurotransmitters and hormones has a convincing effect of acetylcholine and insulin on the cholinergic and GABAeric systems. This also facilitates modeling and studying the mechanisms and methods of treating neuropathies.
Keywords
About the Authors
V. N. KarkischenkoRussian Federation
Vladislav N. Karkischenko, Dr. Sci. (Med.), Prof.
143442, Moscow Region, Krasnogorsk District, Svetlye Gory Village, 1
Yu. V. Fokin
Russian Federation
Yuriy V. Fokin, Cand. Sci. (Biol.)
143442, Moscow Region, Krasnogorsk District, Svetlye Gory Village, 1
S. L. Lyublinskiy
Russian Federation
Stanislav L. Lyublinskiy, Cand. Sci. (Biol.)
143442, Moscow Region, Krasnogorsk District, Svetlye Gory Village, 1
I. A. Pomytkin
Russian Federation
Igor A. Pomytkin, Cand. Sci. (Chem.)
143442, Moscow Region, Krasnogorsk District, Svetlye Gory Village, 1
O. V. Alimkina
Russian Federation
Oksana V. Alimkina
143442, Moscow Region, Krasnogorsk District, Svetlye Gory Village, 1
L. A. Taboyakova
Russian Federation
Lidiya A. Taboyakova
143442, Moscow Region, Krasnogorsk District, Svetlye Gory Village, 1
A. V. Kaptsov
Russian Federation
Alexander V. Kaptsov
143442, Moscow Region, Krasnogorsk District, Svetlye Gory Village, 1
M. M. Borisova
Russian Federation
Mariya M. Borisova
143442, Moscow Region, Krasnogorsk District, Svetlye Gory Village, 1
N. N. Karkischenko
Russian Federation
Nikolay N. Karkischenko, Dr. Sci. (Med.), Prof., Academician of the Russian Academy of Rocket and Artillery Sciences, Corresponding Member of the Russian Academy of Sciences
143442, Moscow Region, Krasnogorsk District, Svetlye Gory Village, 1
References
1. Buresh Ya., Bureshova O., Houston J.P. Metodiki i osnovnye eksperimenty po izucheniyu mozga i povedeniya [Methods and basic experiments in the study of the brain and behavior]. Moscow: Vysshaya shkola Publ., 1991. 399 p. (In Russian).
2. Kanayan A.S., Permakov N.K., Titova G.P., et al. Vliyanie sinteticheskih analogov lej-enkefalina na zhiznesposobnye otdely podzheludochnoj zhelezy pri eksperimenatal’nom pankreatite [Effect of synthetic analogs of leuencephalin on viable pancreas in experimental pancreatitis]. Bulletin of Experimental Biology and Medicine. 1988;4:447– 450. (In Russian).
3. Karkischenko N.N. Psihounitropizm lekarstvennyh sredstv [Psychunitropism of medicines]. Moscow: Medicina Publ., 1993:208. (In Russian).
4. Karkischenko N.N., Karkischenko V.N., Fokin Yu.V., Taboyakova L.A., Alimkina O.V., Borisova M.M. Mezhdu kognitivnost’yu i nejropatiyami: nejrovizualizaciya effektov GAMK-ergicheskoj modulyacii gippokampa i prefronatal’nogo neokorteksa po normirovannym elektrogrammam mozga [Between cognitivity and neuropathies: neuroisualization of effects of GABAergic modulation of the hippocampus and prefronatal neocortexis on normed brain electrograms]. Biomedicine. 2020;16(2):12–38. (In Russian)]. DOI: 10.33647/2074-5982-16-2-12-38.
5. Karkischenko N.N., Fokin Yu.V., Karkischenko V.N., Sakharov D.S., Alimkina O.V. Rol’ nejromediatornyh sistem mozga v generacii ul’trazvukovoj vokalizacii i eyo korrelyacii s povedeniem zhivotnyh [The role of brain neurotransmitter systems in the generation of ultrasonic vocalization and its correlation with animal behavior]. Biomedicine. 2011;4:8–18. (In Russian).
6. Rukovodstvo po laboratornym zhivotnym i al’ternativnym modelyam v biomedicinskih issledovaniyah [Manual on laboratory animals and alternative models in biomedical research]. Ed. by N.N. Karkischenko, et al. Moscow: Profil’-2S Publ., 2010:358. (In Russian).
7. Uzbekov M.G. Aktivnost’ triptofan-5-gidrolazy v sinaptosomah mozga krolika posle odnokratnogo vvedeniya opioidnogo peptida Tur D – Ala – Gly – Phe - NH2 [Tryptophan- 5-hydrolase activity in rabbit brain synaptosomes after a single administration of the Tur D – Ala – Gly – Phe – NH2 opioid peptide]. Bulletin of Experimental Biology and Medicine. 1986;2:159–160. (In Russian).
8. Abbott M.A., Wells D.G., Fallon J.R. The insulin receptor tyrosine kinase substrate p58/53 and the insulin receptor are components of CNS synapses. J. Neurosci. 1999;19:7300–7308.
9. Apelt J., Mehlhorn G., Schliebs R. Insulin-sensitive GLUT4 glucose transporters are colocalized with GLUT3-expressing cells and demonstrate a chemically distinct neuron-specific localization in rat brain. J Neurosci. Res. 1999;57(5):693–705.
10. Brass B.J., Nonner D., Barrett J.N. Differential effects of insulin on choline acetyltransferase and glutamic acid decarboxylase activities in neuron-rich striatal cultures. J. Neurochem. 1992;59(2):415–424.
11. Catalan R., Martinez A., Mata F., Aragones M. Effect of insulin on acetylcholinesterase activity. Biochem. Biophys. Res. Commun. 1981;101:1216–1220.
12. Chiu S.L., Cline H.T. Insulin receptor signaling in the development of neuronal structure and function. Neural. Dev. 2010;5:7.
13. Costa L.E. Hepatic cytochrom p-450 in rats submitted to chronic hypobaric hypoxia. Am. J. Physiol. 1987;259(4):654–659.
14. Craft S., Baker L.D., Montine T.J., Minoshima S., Watson G.S., Claxton A., Arbuckle M., Callaghan M., Tsai E., Plymate S.R., Green P.S., Leverenz J., Cross D., Gerton B. Intranasal insulin therapy for Alzheimer disease and amnestic mild cognitive impairment: A pilot clinical trial. Arch. Neurol. 2012;69:29–38.
15. Ferrario C.R., Reagan L.P. Insulin-mediated synaptic plasticity in the CNS: Anatomical, functional and temporal contexts. Neuropharmacology. 2018;136(Pt B): 182–191. DOI: 10.1016/j.neuropharm.2017.12.001.
16. Garwood C.J., Ratcliffe L.E., Morgan S.V., et al. Insulin and IGF1 signalling pathways in human astrocytes in vitro and in vivo; characterisation, subcellular localisation and modulation of the receptors. Mol. Brain. 2015;8:51.
17. Grillo C.A., Piroli G.G., Hendry R.M., Reagan L.P. Insulin-stimulated translocation of GLUT4 to the plasma membrane in rat hippocampus is PI3-kinase dependent. Brain Res. 2009;1296:35–45.
18. Jin Z., Jin Y., Kumar-Mendu S., Degerman E., Groop L., Birnir B. Insulin reduces neuronal excitability by turning on GABA(A) channels that generate tonic current. PLoS One. 2011;6(1):e16188.
19. Jones M.L., Leonard J.P. PKC site mutations reveal differential modulation by insulin of NMDA receptors containing NR2A or NR2B subunits. J. Neurochem. 2005; 92(6):1431–1438.
20. Kann O. The interneuron energy hypothesis: Implications for brain disease. Neurobiol. Dis. 2016;90:75–85. DOI: 10.1016/j.nbd.2015.08.005.
21. Knusel B., Michel P.P., Schwaber J.S., Hefti F. Selective and nonselective stimulation of central cholinergic and dopaminergic development in vitro by nerve growth factor, basic fibroblast growth factor, epidermal growth factor, insulin and the insulin-like growth factors I and II. J. Neurosci. 1990;10(2):558– 570.
22. Komori T., Morikawa Y., Tamura S.,Doi A., Nanjo K., Senba E. Subcellular localization of glucose transporter 4 in the hypothalamic arcuate nucleus of ob/ob mice under basal conditions. Brain Res. 2005;1049(1):34–42.
23. Kullmann S., Heni M., Hallschmid M., Fritsche A., Preissl H., Häring H.U. Brain insulin resistance at the crossroads of metabolic and cognitive disorders in humans. Physiol. Rev. 2016;96(4):1169–1209.
24. Liao G.Y., Leonard J.P. Insulin modulation of cloned mouse NMDA receptor currents in Xenopus oocytes. J. Neurochem. 1999;73(4):1510–1519.
25. Liu L., Brown J.C. 3rd, Webster W.W., Morrisett R.A., Monaghan D.T. Insulin potentiates N-methyl-Daspartate receptor activity in Xenopus oocytes and rat hippocampus. Neurosci. Lett. 1995;192(1):5–8.
26. McNay E.C., Ong C.T., McCrimmon R.J., Cresswell J., Bogan J.S., Sherwin R.S. Hippocampal memory processes are modulated by insulin and high-fat-induced insulin resistance. Neurobiol. Learn. Mem. 2010;93(4):546–553.
27. McNay E.C., Recknagel A.K. Brain insulin signaling: a key component of cognitive processes and a potential basis for cognitive impairment in type 2 diabetes. Neurobiol. Learn. Mem. 2011;96(3):432–442.
28. Moreta M.P., Burgos-Alonso N., Torrecilla M., Marco-Contelles J., Bruzos-Cidón C. Efficacy of acetylcholinesterase inhibitors on cognitive function in Alzheimer’s disease. Review of reviews. Biomedicines. 2021;9(11):1689.
29. Mueller E., Cenazzani A. Central and peripheral endorphins. Basic and clinical aspects. Raven New York Press, 1984:178.
30. Patel A. Inhibitors of enkephalin-degrading enzymes as potential therapeutic agents. Prag. Med. Chem. 1993;30:327.
31. Pearson-Leary J., Jahagirdar V., Sage J., McNay E.C. Insulin modulates hippocampally-mediated spatial working memory via glucose transporter-4. Behav. Brain Res. 2018;338:32–39.
32. Pearson-Leary J., McNay E.C. Novel roles for the insulin-regulated glucose transporter-4 in hippocampally dependent memory. J. Neurosci. 2016;36(47):11851– 11864.
33. Pomytkin I., Costa-Nunes J.P., Kasatkin V., Veniaminova E., Demchenko A., Lyundup A., Lesch K.P., Ponomarev E.D., Strekalova T. Insulin receptor in the brain: Mechanisms of activation and the role in the CNS pathology and treatment. CNS Neurosci. Ther. 2018;24(9):763–774.
34. Ren Y., Holdengreber V., Ben-Shaul Y., Shah B.H., Varanasi J., Hausman R.E. Causal role for Jun protein in the stimulation of choline acetyltransferase by insulin in embryonic chick retina. Biochem. Biophys. Res. Commun. 1997;232(3):788–793.
35. Rivera E.J., Goldin A., Fulmer N., Tavares R., WandsJ.R., de la Monte S.M. Insulin and insulin-like growth factor expression and function deteriorate with progression of Alzheimer’s disease: link to brain reductions in acetylcholine. J. Alzheimers Dis. 2005;8(3):247–268. DOI: 10.3233/jad-2005-8304.
36. Sawynok J., Pinsky C., Labella F. Minireview of the specificity of naloxone as the opiate antagonist. Life Sci. 1979;25:1621–1632.
37. Schliebs R., Arendt T. The significance of the cholinergic system in the brain during aging and in Alzheimer’s disease. J. Neural. Transm. 2006;113:1625–1644.
38. Selkoe D.J. Alzheimer’s disease is a synaptic failure. Science. 2002;298(5594):789–791.
39. Skeberdis V.A., Lan J., Zheng X., Zukin R.S., Bennett M.V. Insulin promotes rapid delivery of N-methylD-aspartate receptors to the cell surface by exocytosis. Proc. Natl Acad. Sci. USA. 2001;98(6):3561–3566. DOI: 10.1073/pnas.051634698.
40. Stanley M., Macauley S.L., Holtzman D.M. Changes in insulin and insulin signaling in Alzheimer’s disease: cause or consequence? J. Exp. Med. 2016;213(8):1375–1385.
41. Talbot K., Wang H.Y., Kazi H., Han L.Y., Bakshi K.P., Stucky A., Fuino R.L., Kawaguchi K.R., Samoyedny A.J., Wilson R.S., Arvanitakis Z., Schneider J.A., Wolf B.A., Bennett D.A., Trojanowski J.Q., Arnold S.E. Demon-strated brain insulin resistance in Alzheimer’s disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline. J. Clin. Invest. 2012;122(4):1316–1338.
42. Wang H., Wang R., Zhao Z., Ji Z., Xu S., Holscher C., Sheng S. Coexistences of insulin signaling-related proteins and choline acetyltransferase in neurons. Brain Res. 2009;1249:237–243.
43. Wan Q., Xiong Z.G., Man H.Y., Ackerley C.A., Braunton J., Lu W.Y., Becker L.E., MacDonald J.F., Wang Y.T. Recruitment of functional GABA(A) receptors to postsynaptic domains by insulin. Nature. 1997;388(6643):686–690.
44. Wöhr M., Borta A., Schwarting R.K.W. Overt behavior and ultrasonic vocalization in fear conditioning paradigm: A dose-response study in the rat. Neurobio. Learn. Mem. 2005;84:228–240.
Review
For citations:
Karkischenko V.N., Fokin Yu.V., Lyublinskiy S.L., Pomytkin I.A., Alimkina O.V., Taboyakova L.A., Kaptsov A.V., Borisova M.M., Karkischenko N.N. Central Mechanisms of Liposomated Forms of Acetylcholin and Insulin Revealed by an Analysis of Cognitive, Psycho-Emotional and Behavioral Parameters of Rats. Journal Biomed. 2022;18(1):32-55. (In Russ.) https://doi.org/10.33647/2074-5982-18-1-32-55