Preview

Journal Biomed

Advanced search

COMPARATIVE EVALUATION OF THE EFFECT OF PSYCHOACTIVE MEDICINES ON HIPPOCAMPAL THETA AND GAMMA RHYTHMS

https://doi.org/10.33647/2074-5982-15-3-23-32

Abstract

The work was performed on cats with electrodes stereotactically implanted in various parts of the brain. The effect of melatonin, atomoxetine and chlorpromazine on cerebral cortex structures with different phylogenetic organization and on the hippocampus in particular was studied.

A normalization of FFT-transformed brain electrograms was conducted. The electrograms were recorded under the influence of the agents under study, which exhibit an activating and depressing effect recorded by the main pharmacokinetic points. Although the psychoactive agents demonstrate different neurochemical and clinical-pharmacological properties, their effects are most clearly seen on brain electrograms by the activity of hippocampal θ and γ rhythms that reflect mesolimbic mechanisms. These mechanisms are characterized by uniqueness of action during the entire period of influence, which coincides with the pharmacodynamic and pharmacokinetic data.

These manifestations reflect the effect of the studied psychoactive agents on the fundamental mechanisms of the brain consisting, e.g., in the transformation of intracenter relations and the formation of cognitive functions. 

About the Author

Yu. V. Fokin
Scientific Center of Biomedical Technologies of the Federal Medical and Biological Agency of Russia
Russian Federation

Cand. Sci. (Biol.),

143442, Moscow region, Krasnogorsk district, Svetlye gory village, building 1



References

1. Karkischenko N.N. Al’ternativy biomediciny. T. 2. Klassika i al’ternativy farmakotoksikologii [Alternatives to biomedicine. Vol. 2. Classics and alternatives to pharmacotoxicology]. Moscow: VPK Publ., 2007. 448 p. (In Russian).

2. Karkischenko N.N. K nejrodinamike aminazina: avtoref. diss. … k.m.n. [To the neurodynamics of chlorpromazine: Abstract of the dissertation … Cand. Sci. (Med.)]. Rostov-on-Don: Rostov State Medical Institute Publ., 1968. 18 p. (In Russian).

3. Karkischenko N.N. Farmakologiya sistemnoj deyatel’nosti mozga [Pharmacology of systemic activity of the brain]. Rostov: Rostizdat Publ., 1975. 152 p. (In Russian).

4. Karkischenko N.N., Karkischenko V.N., Fokin Yu.V., Kharitonov S.Yu. Nejrovizualizaciya effektov psihoaktivnyh sredstv posredstvom normalizacii elektrogramm golovnogo mozga [Neuroimaging of the Effects of Psychoactive Substances by Means of Normalization of Brain Electrograms]. Biomedicine. 2019;15(1):12–34. (In Russian). DOI: 10.33647/2074-5982-15-1-12-34.

5. Karkischenko N.N., Fokin Yu.V., Karkischenko V.N., Sakharov D.S., Alimkina O.V. Rol’ nejromediatornyh sistem mozga v generacii ul’trazvukovoj vokalizacii i eyo korrelyacii s povedeniem zhivotnyh [The role of brain neurotransmitter systems in the generation of ultrasonic vocalization and its correlation with animal behavior]. Biomedicine. 2011;4:8–18. (In Russian).

6. Karkischenko N.N., Fokin Yu.V., Karkischenko V.N., Taboyakova L.A., Mokrousov M.I., Alimkina O.V. Konvergentnaya validaciya intracentral’nyh otnoshenij golovnogo mozga zhivotnyh [Convergent validation of intracentral relationships of the brain of animals]. Biomedicine. 2017;3:16–39. (In Russian).

7. Karkischenko N.N., Fokin Yu.V., Karkischenko V.N., Taboyakova L.A., Kharitonov S.Yu., Alimkina O.V. Novye podhody k ocenke intracentral’nyh otnoshenij po pokazatelyam operantnogo povedeniya i ehlektrogramm mozga koshek [New approaches to the assessment of intracentral relations in terms of operant behavior and electrograms of the cats brain]. Biomedicine. 2018;4:4–17. (In Russian).

8. Pomytkin I.A., Karkischenko N.N. Metabolicheskij kontrol’ vysokochastotnyh gamma-oscillyacij v golovnom mozge [Metabolic control of high frequency gamma oscillations in the brain]. Biomedicine. 2019;15(2):43–53. (In Russian). DOI: 10.33647/2074-5982-15-2-43-53.

9. Rukovodstvo po laboratornym zhivotnym i al’ternativnym modelyam v biomedicinskih issledovaniyah [Manual on laboratory animals and alternative models in biomedical research]. Ed. by N.N. Karkischenko, et al. Moscow: Profi l’-2S Publ., 2010. 358 p. (In Russian).

10. Bland B.H., Colom L.V. Extrinsic and intrinsic properties underlying oscillation and synchrony in limbic cortex. Prog. Neurobiol. 1993;41:157–208.

11. Bragin A., Jandó G., Nádasdy Z., Hetke J., Wise K., Buzsáki G. Gamma (40–100 Hz) oscillation in the hippocampus of the behaving rat. J. Neurosci. 1995;15(1, Pt 1):47–60.

12. Kann O. The interneuron energy hypothesis: Implications for brain disease. Neurobiol. Dis. 2016;90:75–85. DOI: 10.1016/j.nbd.2015.08.005.

13. Kann O., Huchzermeyer C., Kovács R., Wirtz S., Schuelke M. Gamma oscillations in the hippocampus require high complex I gene expression and strong functional performance of mitochondria. Brain. 2011;134(Pt 2):345–358. DOI: 10.1093/brain/awq333.

14. Tort A.B., Kramer M.A., Thorn C., Gibson D.J., Kubota Y., Graybiel A.M., et al. Dynamic crossfrequency couplings of local field potential oscillations in rat striatum and hippocampus during performance of a T-maze task. Proc. Natl Acad. Sci. USA. 2008;105(51):20517–20522. DOI: 10.1073/pnas.0810524105.


Review

For citations:


Fokin Yu.V. COMPARATIVE EVALUATION OF THE EFFECT OF PSYCHOACTIVE MEDICINES ON HIPPOCAMPAL THETA AND GAMMA RHYTHMS. Journal Biomed. 2019;(3):23-32. (In Russ.) https://doi.org/10.33647/2074-5982-15-3-23-32

Views: 570


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2074-5982 (Print)
ISSN 2713-0428 (Online)