Preview

БИОМЕДИЦИНА

Расширенный поиск

ИЗУЧЕНИЕ ФУНКЦИЙ МИТОХОНДРИЙ В ЭКСПЕРИМЕНТЕ

https://doi.org/10.33647/2074-5982-15-3-71-77

Полный текст:

Аннотация

Митохондрии играют ключевую роль в жизнедеятельности клетки. Наиболее характерной их особенностью является наличие большого числа ферментов, участвующих в окислительном фосфорилировании и снабжении клетки энергией. Кроме того, митохондрии участвуют в хранении и передаче наследственной информации, апоптозе и пластических процессах. Нарушением функций митохондрий сопровождается любое заболевание, поэтому дальнейшее исследование функциональных особенностей митохондрий при различной патологии в клинике и эксперименте, а также поиск новых диагностических маркеров перспективны и актуальны.

Об авторах

Н. Е. Максимович
УО «Гродненский государственный медицинский университет»
Беларусь

д.м.н., проф.,

230009, Гродно, ул. Горького, д. 80



Е. И. Бонь
УО «Гродненский государственный медицинский университет»
Беларусь

к.б.н.,

230009, Гродно, ул. Горького, д. 80



И. К. Дремза
УО «Гродненский государственный медицинский университет»
Беларусь

к.б.н., доц.,

230009, Гродно, ул. Горького, д. 80



Список литературы

1. Baertling F. NDUFA9 point mutations cause a variable mitochondrial complex I assembly defect. Clinical Genet. 2018;93:111–118.

2. Boumans H., Grivell L.A., Berden J.A. The respiratory chain in yeast behaves as a single functional unit. J. Biol. Chem. 1998;273:4872–4877.

3. Boyer P.D. ATP synthase — past and future. Biochim. Biophys. Acta. 1998;1365:3–9.

4. Brand M.D., Murphy M.P. Control of electron fl ux through the respiratory chain in mitochondria and cells. Biological Review. 1987;62:141–193.

5. Britti E. Frataxin-defi cient neurons and mice models of Friedreich ataxia are improved by TAT-MTScsFXN treatment. J. Cell Mol. Med. 2018;22:834–848.

6. Capaldi R.A., Darley-Usmar V., Fuller S., Millet F. Structural and functional features of the interaction of cytochrome с with complex III and cytochrome с oxidase. FEBS Letters. 1982;138:1–7.

7. Casey R.P. Membrane reconstruction of the energy-conserving enzymes of oxidative phosphorylation. Biochemistry Acta. 1984;768:319–347.

8. Chao D.T., Korsmeyer S.J. BCL-2 family: regulators of cell death. Annu. Rev. Immunol. 1998;16:395–419.

9. Chen X., Lu J. Analysis of mitochondrial gene mutations in a child with Leigh syndrome. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2019;36(4):318–321.

10. DePierre J.W., Ernster L. Enzyme topology of intracellular membranes. Review Biochemistry. 1988;46:201– 261.

11. Hackenbrock C.R. Lateral diffusion and electron transfer in the mitochondrial inner membrane. Trends Biochemistry. 1981;15:151–154.

12. Hauser D.N. Hexokinases link DJ-1 to the PINK1/parkin pathway. Mol. Neurodegener. 2017;12:70–77.

13. Hoffmann C. The effect of differentiation and TGFß on mitochondrial respiration and mitochondrial enzyme abundance in cultured primary human skeletal muscle cells. Science Report. 2018;8:737–740.

14. Klinyerberg M. Principles of carrier catalysis elucidated by comparing two similar membrane translocators from mitochondria, the ADP/ATP carrier and the uncoupling protein. New York Academic Science. 1985;456:279–288.

15. Magnoni R. The Hsp60 folding machinery is crucial for manganese superoxide dismutase folding and function. Free Radic Res. 2014;48:168–179.

16. Mikkilineni L., Whitaker-Menezes D., Domingo-Vidal M., Sprandio J. Hodgkin lymphoma: A complex metabolic ecosystem with glycolytic reprogramming of the tumor microenvironment. Semin Oncol. 2017;44:218–225.

17. Pecina P., Nůsková H., Karbanová V., Kaplanová V., Mráček T., Houštěk J. Role of the mitochondrial ATP synthase central stalk subunits γ and δ in the activity and assembly of the mammalian enzyme. Acta Bioenergetics. 2018;1859(5):374–381.

18. Pirson M. The curious case of peroxiredoxin-5: what its absence in aves can tell us and how it can be used. BMC Evolution Biology. 2018;18:18–22.

19. Powell K.A., Davies J.R., Taylor E., Wride M.A., Votruba M. Mitochondrial localization and ocular expression of mutant Opa3 in a mouse model of 3-methylglutaconicaciduria type III. Invest Ophthalmology Vis Science. 2011;52(7):4369– 4380.

20. Prince R.C. The proton pump of cytochrome oxidase. Trends Biochemistry Science. 1988;13:159–160.

21. Sas K., Robotka H., Toldi J., Vécsei L. Mitochondria, metabolic disturbances, oxidative stress and the kynurenine system, with focus on neurodegenerative disorders. J. Neurol. Sci. 2007;15:221–239.

22. Serricchio M., Vissa A., Kim P.K., Yip C.M., McQuibban G.A. Cardiolipin synthesizing enzymes form a complex that interacts with cardiolipin-dependent membrane organizing proteins. Acta Molecular Cell Biology Lipids. 2018;4:447–457.

23. Shiba S., Ikeda K., Horie-Inoue K., Nakayama A., Tanaka T., Inoue S. Defi ciency of COX7RP, a mitochondrial supercomplex assembly promoting factor, lowers blood glucose level in mice. Sci. Rep. 2017;7:7606–7610.

24. Silva S., Ghiarone T., Schreiber K., Grant D., White T., Frisard M., et al. Angiotensin II suppresses autophagy and disrupts the ultrastructural morphology and function of mitochondria in mouse skeletal muscle. J. Appl Physiol. 2019;12:34–42.

25. Slater Е.С. The Q Cycle, an ubiquitous mechanism of electron transfer. Trends Biochemistry Science. 1983;8:239–242.

26. Srere P.A. The structure of the mitochondrial inner membrane-matrix compartment. Trends Biochemistry Science. 1982;7:375–378.

27. Teixeira F.K., Sanchez C.G., Hurd T.R., Seifert J.R., Czech B., Preall J.B., et al. ATP synthase promotes germ cell differentiation independent of oxidative phosphorylation. Natural Cell Biology. 2015;17(5):689–696.

28. Thorwald M. Angiotensin receptor blockade improves cardiac mitochondrial activity in response to an acute glucose load in obese insulin resistant rats. Redox Biol. 2018;14:371–378.

29. van Eden W., Jansen M., Ludwig I., Leufkens P. Heat Shock Proteins Can Be Surrogate Autoantigens for Induction of Antigen Specifi c Therapeutic Tolerance in Rheumatoid Arthritis. Front Immunol. 2019;10:279–284.

30. Veis D.J., Sorenson C.M., Shutter J.R., Korsmeyer S.J. Bcl-2-defi cient mice demonstrate fulminant lymphoid apoptosis, polycystic kidneys, and hypopigmented hair. Cell. 1993;75:229–240.

31. Wallace L., Cherian A., Adamson P. Comparison of Pre- and Post-translational Expressions of COXIV-1 and MT-ATPase 6 Genes in Colorectal Adenoma-Carcinoma Tissues. J. Carcinog Mutagen. 2018;9:319–324.

32. Zawislak A. Neuron-derived transthyretin modulates astrocytic glycolysis in hormone-independent manner. Oncotarget. 2017;8:106–118.

33. Zhang K., Wang G., Zhang X. COX7AR is a Stressinducible Mitochondrial COX Subunit that Promotes Breast Cancer Malignancy. Sci. Rep. 2016;6:31–36.

34. Zhang X., Zhao X., Li Y., Zhou Y., Zhang Z. Long noncoding RNA SOX21-AS1 promotes cervical cancer progression by competitively sponging miR-7/ VDAC1. J. Cell Physiol. 2019;25:56–67.


Для цитирования:


Максимович Н.Е., Бонь Е.И., Дремза И.К. ИЗУЧЕНИЕ ФУНКЦИЙ МИТОХОНДРИЙ В ЭКСПЕРИМЕНТЕ. БИОМЕДИЦИНА. 2019;(3):71-77. https://doi.org/10.33647/2074-5982-15-3-71-77

For citation:


Maksimovich N.Y., Bon E.I., Dremza I.K. RESEARCH INTO THE FUNCTIONS OF MITOCHONDRIA IN EXPERIMENT. Journal Biomed. 2019;(3):71-77. (In Russ.) https://doi.org/10.33647/2074-5982-15-3-71-77

Просмотров: 51


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2074-5982 (Print)
ISSN 2074-5982 (Online)