Preview

Journal Biomed

Advanced search

Analysis of Main World Trends in Objectivization of Protocols for Behavioral Testing of Laboratory Animals with Brain Pathology

https://doi.org/10.33647/2074-5982-19-1-34-46

Abstract

Behavioral phenotyping of rodents using neurodegeneration models has received much research attention over the past three decades. However, some difficulties still exist in understanding the variability of behavior caused by genetic, environmental, and biological factors, human intervention and poorly standardized experimental protocols, which can negatively affect the interpretation of the results obtained. In this article, we discuss factors that have a negative impact on the performance of behavioral testing of laboratory animals, modern approaches to overcome them, as well as new technologies, such as visualization of neuronal activity using ion-dependent fluorescent indicators (optogenetics), which expand the boundaries of the study of neuronal networks responsible for behavior by evaluating neuronal function at both the cellular and population levels. Ultimately, this will increase the reliability of the results obtained and provide an opportunity to take a fresh look at the ethological paradigms of a particular transgenic mouse model.

About the Authors

A. B. Salmina
Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Professor V.F. Voino-Yasenetsky of the Ministry of Health Care of Russia; Brain Institute, Research Center of Neurology
Russian Federation

Alla B. Salmina, Dr. Sci. (Med.), Prof.

660022,  Krasnoyarsk, Partizana Zheleznyaka Str., 1; 105064,  Moscow, Vorontsovo Pole Str., 14



Ya. V. Gorina
Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Professor V.F. Voino-Yasenetsky of the Ministry of Health Care of Russia
Russian Federation

Yana V. Gorina*, Cand. Sci. (Pharm.), Assoc. Prof.

660022,  Krasnoyarsk, Partizana Zheleznyaka Str., 1



A. V. Bolshakova
St. Petersburg Polytechnic University of Peter the Great
Russian Federation

Anastasia V. Bolshakova, Cand. Sci. (Biol.)

194021, St. Petersburg, Khlopina Str., 11



O. L. Vlasova
St. Petersburg Polytechnic University of Peter the Great
Russian Federation

Olga L. Vlasova, Dr. Sci. (Phys.-Math.), Assoc. Prof.

194021, St. Petersburg, Khlopina Str., 11



References

1. Amaral-Júnior P.A., Mourão F.A.G., Amancio M.C.L., Pinto H.P.P., Carvalho V.R., Guarnieri L.d.O., Magalhães H.A., Moraes M.F.D. A custom microcontrolled and wireless-operated chamber for auditory fear conditioning. Front. Neurosci. 2019;13:1193. DOI: 10.3389/fnins.2019.01193.

2. Anderson David J., Perona P. Toward a science of computational ethology. Neuron. 2014;84(1):18–31. DOI: 10.1016/j.neuron.2014.09.005.

3. Anpilov S., Shemesh Y., Eren N., Harony-Nicolas H., Benjamin A., Dine J., Oliveira V.E.M., Forkosh O., Karamihalev S., Hüttl R.-E., Feldman N., Berger R., Dagan A., Chen G., Neumann I.D., Wagner S., Yizhar O., Chen A. Wireless optogenetic stimulation of oxytocin neurons in a semi-natural setup dynamically elevates both pro-social and agonistic behaviors. Neuron. 2020;107(4):644e7–655.e7. DOI: 10.1016/j. neuron.2020.05.028.

4. Aravanis A., Wang L., Zhang F., Meltzer L., Mogri M., Schneider B., Deisseroth K. An optical neural interface: In vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology. J. Neural Eng. 2007;4(3):S143–S156. DOI: 10.1088/1741-2560/4/3/ S02.

5. Berg L., Gerdey J., Masseck O.A. Optogenetic manipulation of neuronal activity to modulate behavior in freely moving mice. J. Vis. Exp. 2020;164. DOI: 10.3791/61023.

6. Bedbrook C.N., Yang K.K., Robinson J.E., Mackey E.D., Gradinaru V., Arnold F.H. Machine learning-guided channelrhodopsin engineering enables minimally invasive optogenetics. Nature Methods. 2019;16(11):1176– 1184. DOI: 10.1038/s41592-019-0583-8.

7. Berger E., Magliaro C., Paczia N., Monzel A.S., Antony P., Linster C.L., Bolognin S., Ahluwalia A., Schwamborn J.C. Millifluidic culture improves human midbrain organoid vitality and differentiation. Lab. Chip. 2018;18(20): 3172–3183. DOI: 10.1039/c8lc00206a.

8. Buchroithner B., Mayr S., Hauser F., Priglinger E., Stangl H., Santa-Maria A.R., Deli M.A., Der A., Klar T.A., Axmann M., Sivun D., Mairhofer M., Jacak J. Dual channel microfluidics for mimicking the blood-brain barrier. ACS Nano. 2021;15(2):2984–2993. DOI: 10.1021/acsnano.0c09263.

9. Coghlan S., Webber S., Carter M. Improving ethical attitudes to animals with digital technologies: The case of apes and zoos. Ethics Inf. Technol. 2021;23(4):825–839. DOI: 10.1007/s10676-021-09618-7.

10. de Chaumont F., Coura R.D.-S., Serreau P., Cressant A., Chabout J., Granon S., Olivo-Marin J.-C. Computerized video analysis of social interactions in mice. Nat. Methods. 2012;9(4):410–417. DOI: 10.1038/nmeth.1924.

11. Deng C., Yuan H., Dai J. Behavioral manipulation by optogenetics in the nonhuman primate. Neuroscientist. 2017;24(5):526–539. DOI: 10.1177/1073858417728459.

12. Donnarumma F., Prevete R., Maisto D., Fuscone S., Irvine E.M., van der Meer M.A.A., Kemere C., Pezzulo G. A framework to identify structured behavioral patterns within rodent spatial trajectories. Sci. Rep. 2021;11(1):468. DOI: 10.1038/s41598-020- 79744-7.

13. Fan S., Dal Monte O., Chang S.W.C. Levels of naturalism in social neuroscience research. iScience. 2021; 24(7):102702. DOI: 10.1016/j.isci.2021.102702.

14. Gomez-Marin A., Paton J.J., Kampff A.R., Costa R.M., Mainen Z.F. Big behavioral data: Psychology, ethology and the foundations of neuroscience. Nat. Neurosci. 2014;17(11):1455–1462. DOI: 10.1038/nn.3812.

15. Gouveia K., Hurst J.L. Optimising reliability of mouse performance in behavioural testing: The major role of non-aversive handling. Sci. Rep. 2017;7:44999. DOI: 10.1038/srep44999.

16. Guo J., Wang P., Sozen B., Qiu H., Zhu Y., Zhang X., Ming J., Zernicka-Goetz M., Na J. Machine learning-assisted high-content analysis of pluripotent stem cell-derived embryos in vitro. Stem Cell Reports. 2021;16(5):1331–1346. DOI: 10.1016/j.stemcr.2021.03.018.

17. Hånell A., Marklund N. Structured evaluation of rodent behavioral tests used in drug discovery research. Front. Behav. Neurosci. 2014;8:252. DOI: 10.3389/ fnbeh.2014.00252.

18. Hao Y., Thomas A.M., Li N. Fully autonomous mouse behavioral and optogenetic experiments in home-cage. eLife. 2021;10:e66112. DOI: 10.7554/eLife.66112.

19. Henderson L.J., Dani B., Serrano E.M.N., Smulders T.V., Roughan J.V. Benefits of tunnel handling persist after repeated restraint, injection and anaesthesia. Sci. Rep. 2020;10(1):14562. DOI: 10.1038/ s41598-020-71476-y.

20. Henderson L.J., Smulders T.V., Roughan J.V. Identifying obstacles preventing the uptake of tunnel handling methods for laboratory mice: An international thematic survey. PLoS One. 2020;15(4):e0231454. DOI: 10.1371/journal.pone.0231454.

21. Hong W., Kennedy A., Burgos-Artizzu X.P., Zelikowsky M., Navonne S.G., Perona P., Anderson D.J. Automated measurement of mouse social behaviors using depth sensing, video tracking, and machine learning. Proc. Natl. Acad. Sci. U S A. 2015;112(38):E5351– E5360. DOI: 10.1073/pnas.1515982112.

22. Kabra M., Robie A.A., Rivera-Alba M., Branson S., Branson K. JAABA: Interactive machine learning for automatic annotation of animal behavior. Nat. Methods. 2013;10(1):64–67. DOI: 10.1038/ nmeth.2281.

23. Kang M.S., Han J.-H. Optogenetic inhibition of medial entorhinal cortex inputs to the hippocampus during a short period of time right after learning disrupts contextual fear memory formation. Mol. Brain. 2021;14(1):2. DOI: 10.1186/s13041-020-00719-w

24. Kim S., Kyung T., Chung J.-H., Kim N., Keum S., Lee J., Park H., Kim H.M., Lee S., Shin H.-S., Do Heo W. Non-invasive optical control of endogenous Ca2+ channels in awake mice. Nat. Commun. 2020;11(1):210. DOI: 10.1038/s41467-019-14005-4.

25. Kuchemüller K.B., Pörtner R., Möller J. Digital twins and their role in model-assisted design of experiments. Adv. Biochem. Eng. Biotechnol. 2021;177:29– 61. DOI: 10.1007/10_2020_136.

26. Kutlu M.G., Zachry J.E., Melugin P.R., Cajigas S.A., Chevee M.F., Kelly S.J., Kutlu B., Tian L., Siciliano C.A., Calipari E.S. Dopamine release in the nucleus accumbens core signals perceived saliency. Curr. Biol. 2021;31(21):4748e8–4761.e8. DOI: 10.1016/j.cub.2021.08.052.

27. Lee J.-E., Kwon H.-J., Choi J., Seo J.-S., Han P.-L. Aging increases vulnerability to stress-induced depression via upregulation of NADPH oxidase in mice. Commun. Biol. 2020;3(1):292. DOI: 10.1038/ s42003-020-1010-5.

28. Lewejohann L., Reinhard C., Schrewe A., Brandewiede J., Haemisch A., Görtz N., Schachner M., Sachser N. Environmental bias? Effects of housing conditions, laboratory environment and experimenter on behavioral tests. Genes Brain Behav. 2006;5(1): 64–72. DOI: 10.1111/j.1601-183X.2005.00140.x.

29. Lopatina O.L., Panina Y.A., Malinovskaya N.A., Salmina A.B. Early life stress and brain plasticity: From molecular alterations to aberrant memory and behavior. Rev. Neurosci. 2021;32(2):131–142. DOI: 10.1515/revneuro-2020-0077.

30. Mencattini A., Mattei F., Schiavoni G., Gerardino A., Businaro L., Di Natale C., Martinelli E. From Petri dishes to organ on chip platform: The increasing importance of machine learning and image analysis. Front. Pharmacol. 2019;10:100. DOI: 10.3389/ fphar.2019.00100.

31. Noldus L.P.J.J., Spink A.J., Tegelenbosch R.A.J. EthoVision: A versatile video tracking system for automation of behavioral experiments. Behav. Res. Methods Instrum. Comput. 2001;33(3):398–414. DOI: 10.3758/bf03195394.

32. Park S.-E., Laxpati N.G., Gutekunst C.-A., Connolly M.J., Tung J., Berglund K., Mahmoudi B., Gross R.E. A machine learning approach to characterize the modulation of the hippocampal rhythms via optogenetic stimulation of the medial septum. Int. J. Neural Syst. 2019;29(10):1950020. DOI: 10.1142/ S0129065719500205.

33. Pasquet M.O., Tihy M., Gourgeon A., Pompili M.N., Godsil B.P., Léna C., Dugué G.P. Wireless inertial measurement of head kinematics in freely-moving rats. Sci. Rep. 2016;6:35689. DOI: 10.1038/ srep35689.

34. Perusini J.N., Cajigas S.A., Cohensedgh O., Lim S.C., Pavlova I.P., Donaldson Z.R., Denny C.A. Optogenetic stimulation of dentate gyrus engrams restores memory in Alzheimer’s disease mice. Hippocampus. 2017;27(10):1110–1122. DOI: 10.1002/ hipo.22756.

35. Richter S.H. Automated home-cage testing as a tool to improve reproducibility of behavioral research? Front. Neurosci. 2020;14:383. DOI: 10.3389/fnins.2020.00383.

36. Richter S.H., Garner J.P., Zipser B., Lewejohann L., Sachser N., Touma C., Schindler B., Chourbaji S., Brandwein C., Gass P., van Stipdonk N., van der Harst J., Spruijt B., Võikar V., Wolfer D.P., Würbel H. Effect of population heterogenization on the reproducibility of mouse behavior: A multi-laboratory study. PLoS One. 2011;6(1):e16461. DOI: 10.1371/journal.pone.0016461.

37. Salmina A.B., Gorina Y.V., Komleva Y.K., Panina Y.A., Malinovskaya N.A., Lopatina O.L. Early life stress and metabolic plasticity of brain cells: Impact on neurogenesis and angiogenesis. Biomedicines. 2021;9(9):1092. DOI: 10.3390/biomedicines9091092.

38. Salmina A.B., Kharitonova E.V., Gorina Y.V., Teplyashina E.A., Malinovskaya N.A., Khilazheva E.D., Mosyagina A.I., Morgun A.V., Shuvaev A.N., Salmin V.V., Lopatina O.L., Komleva Y.K. Bloodbrain barrier and neurovascular unit in vitro models for studying mitochondria-driven molecular mechanisms of neurodegeneration. Int. J. Mol. Sci. 2021;22(9):4661. DOI: 10.3390/ijms22094661.

39. Salmina A.B., Komleva Y.K., Malinovskaya N.A., Morgun A.V., Teplyashina E.A., Lopatina O.L., Gorina Y.V., Kharitonova E.V., Khilazheva E.D., Shuvaev A.N. Blood-Brain barrier breakdown in stress and neurodegeneration: Biochemical mechanisms and new models for translational research. Biochemistry (Mosc.). 2021;86(6):746–760. DOI: 10.1134/ S0006297921060122.

40. Saré R.M., Lemons A., Smith C.B. Behavior testing in rodents: Highlighting potential confounds affecting variability and reproducibility. Brain Sci. 2021;11(4):522. DOI: 10.3390/brainsci11040522.

41. Saxena D., Sharma A., Siddiqui H.M., Kumar R. Blood brain barrier permeability prediction using machine learning techniques: An update. Curr. Pharm. Biotechnol. 2019;20(14):1163–1171. DOI: 10.2174/1 389201020666190821145346.

42. Smith J.D., Beran M.J., Couchman J.J., Coutinho M.V.C., Boomer J.B. Animal metacognition: Problems and prospects. Comp. Cogn. Behav. Rev. 2009;4:40–53. DOI: 10.3819/ccbr.2009.40004.

43. Sousa N., Almeida O.F.X., Wotjak C.T. A hitchhiker’s guide to behavioral analysis in laboratory rodents. Genes Brain Behav. 2006;5(Suppl 2):5–24. DOI: 10.1111/j.1601-183X.2006.00228.x.

44. von Ziegler L., Sturman O., Bohacek J. Big behavior: Challenges and opportunities in a new era of deep behavior profiling. Neuropsychopharmacology. 2021;46(1):33–44. DOI: 10.1038/s41386-020-0751-7.

45. Wahl D., Coogan S.C., Solon-Biet S.M., de Cabo R., Haran J.B., Raubenheimer D., Cogger V.C., Mattson M.P., Simpson S.J., Le Couteur D.G. Cognitive and behavioral evaluation of nutritional interventions in rodent models of brain aging and dementia. Clin. Interv. Aging. 2017;12:1419–1428. DOI: 10.2147/CIA.S145247.

46. Wang M.F.Z., Fernandez-Gonzalez R. (Machine-) Learning to analyze in vivo microscopy: Support vector machines. Biochim. Biophys. Acta Proteins Proteom. 2017;1865(11 Pt B):1719–1727. DOI: 10.1016/j.bbapap.2017.09.013.

47. Yamauchi Y., Matsukura H., Ueda M., Aoki W. Development of a novel sparse labeling method by machine learning-guided engineering of Cre-lox recombination. FASEB J. 2021;35(S1). DOI: 10.1096/ fasebj.2021.35.S1.01974.

48. Yang Y., Wu M., Vázquez-Guardado A., Wegener A.J., Grajales-Reyes J.G., Deng Y., Wang T., Avila R., Moreno J.A., Minkowicz S., Dumrongprechachan V., Lee J., Zhang S., Legaria A.A., Ma Y., Mehta S., Franklin D., Hartman L., Bai W., Han M., Zhao H., Lu W., Yu Y., Sheng X., Banks A., Yu X., Donaldson Z.R., Gereau R.W., Good C.H., Xie Z., Huang Y., Kozorovitskiy Y., Rogers J.A. Wireless multilateral devices for optogenetic studies of individual and social behaviors. Nat. Neurosci. 2021;24(7):1035– 1045. DOI: 10.1038/s41593-021-00849-x.


Review

For citations:


Salmina A.B., Gorina Ya.V., Bolshakova A.V., Vlasova O.L. Analysis of Main World Trends in Objectivization of Protocols for Behavioral Testing of Laboratory Animals with Brain Pathology. Journal Biomed. 2023;19(1):34-46. (In Russ.) https://doi.org/10.33647/2074-5982-19-1-34-46

Views: 409


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2074-5982 (Print)
ISSN 2713-0428 (Online)