Inhalation Administration of Leytragin to C57BL/6Y Mice in an ARDS Model Increases the Expression Level of SIRT1 Gene
https://doi.org/10.33647/2074-5982-19-3-36-41
Abstract
This paper describes a technique for inhalation administration of Leutragin into the lungs of C57BL/6Y mice in a model of acute respiratory distress syndrome (ARDS). Inhalations were carried out using an OMRON COMP AIR NE-C24 Kids compression inhaler with a nozzle for simultaneous administration to several mice, developed at the Scientific Center of Biomedical Technologies of FMBA of Russia. Modeling of ARDS was carried out by sequential administration of α-galactosylceramide, inhaled at a dose of 1 μg/mouse, and, following 24 hours, a combination of E. coli lipopolysaccharide (LPS) at a dose of 300 μg/mouse. Thirty minutes after the administration of LPS, inhalation administration of the Leytragin drug was carried out to mice in the experimental group and normal saline in the control group. After inhalation, a biomaterial (lung tissue) was collected to evaluate the expression of the SIRT1 gene by RT- PCR as a marker of successful penetration of the drug into the lung tissue.
About the Authors
N. S. OgnevaRussian Federation
Nastasya S. Ogneva
143442, Moscow Region, Krasnogorsk District, Svetlye Gory Village, 1
L. A. Taboyakova
Russian Federation
Lidiya A. Taboyakova
143442, Moscow Region, Krasnogorsk District, Svetlye Gory Village, 1
O. V. Alimkina
Russian Federation
Oksana V. Alimkina
143442, Moscow Region, Krasnogorsk District, Svetlye Gory Village, 1
N. V. Petrova
Russian Federation
Nataliya V. Petrova
143442, Moscow Region, Krasnogorsk District, Svetlye Gory Village, 1
References
1. Каргопольцева Д.Р., Кательникова А.Е., Крышень К.Л., Гущин Я.А. Особенности дыхательной системы животных, используемых в доклинических исследованиях, которые необходимо учитывать при моделировании патологий лёгких. Лабораторные животные для научных исследований. 2020;4:71–85. [Kargopoltceva D.R., Katelnikova A.E., Kryshen K.L., Guschin Ya.A. Osobennosti dykhatel'noy sistemy zhivotnykh, ispol'zuemykh v doklinicheskikh issledovaniyakh, kotorye neobkhodimo uchityvat' pri modelirovanii patologiy legkikh [Features of the respiratory system of animals used in pre-clinical studies which should be taken account of the modeling lung pathologies]. Laboratornye zhivotnye dlya nauchnykh issledovaniy [Laboratory Animals for Science]. 2020;4:71–85. (In Russian)]. DOI: 10.29296/2618723X-2020-04-08.
2. Каркищенко В.Н., Помыткин И.А., Петрова Н.В., Нестеров М.С., Агельдинов Р.А., Зотова Л.В., Колоскова Е.М., Слободенюк В.В., Скворцова В.И. Лейтрагин подавляет экспрессию цитокинов, включая интерлейкин-6, в модели «цитокинового шторма» у мышей линии C57BL/6Y с индуцированным острым респираторным дистресс-синдромом. Биомедицина. 2020;16(4):34–43. [Karkischenko V.N., Pomytkin I.A., Petrova N.V., Nesterov M.S., Ageldinov R.A., Zotova L.V., Koloskova E.M., Slobodenyuk V.V., Skvortsova V.I. Leytragin podavlyaet ekspressiyu tsitokinov, vklyuchaya interleykin-6, v modeli «tsitokinovogo shtorma» u myshey linii C57BL/6Y s indutsirovannym ostrym respiratornym distress-sindromom [Leutragin inhibits expression of cytokines, including interleukin-6, in a “cytokine storm” model in C57BL/6Y mice with induced acute respiratory distress syndrome]. Biomedicina [Journal Biomed]. 2020;16(4):34–43. (In Russian)]. DOI: 10.33647/2074-5982-16-4-34-43.
3. Руководство по лабораторным животным и альтернативным моделям в биомедицинских исследованиях. Под ред. Н.Н. Каркищенко и др. М.: Профиль-2С, 2010:358. [Rukovodstvo po laboratornym zhivotnym i al'ternativnym modelyam v biomeditsinskikh issledovaniyakh [Manual on laboratory animals and alternative models in biomedical research]. Ed. by N.N. Karkischenko, et al. Moscow: Profil’-2S Publ., 2010:358. (In Russian)].
4. Karkischenko V.N., Skvortsova V.I., Gasanov M.T., Fokin Y.V., Nesterov M.S., Petrova N.V., Alimkina O.V., Pomytkin I.A. Inhaled [D-Ala2]-dynorphin 1-6 prevents hyperacetylation and release of high mobility group box 1 in a mouse model of acute lung injury. J. Immunol. Res. 2021;2021:4414544. DOI: 10.1155/2021/4414544.
5. Rahman I., Kinnula V.L., Gorbunova V., Yao H. SIRT1 as a therapeutic target in inflammaging of the pulmonary disease. Prev. Med. 2012;54(Suppl):S20–28. DOI: 10.1016/j.ypmed.2011.11.014.
6. Sinha P., Bos L.D. Pathophysiology of the acute respiratory distress syndrome: Insights from clinical studies. Crit. Care Clin. 2021;37(4):795–815. DOI: 10.1016/j. ccc.2021.05.005.
7. Vijayakumar E.C., Bhatt L.K., Prabhavalkar K.S. High mobility group box-1 (HMGB1): A potential target in therapeutics. Curr. Drug Targets. 2019;20(14):1474– 1485. DOI: 10.2174/1389450120666190618125100.
8. Wang Z., Guo W., Yi F., Zhou T., Li X., Feng Y., Guo Q., Xu H., Song X., Cao L. The regulatory effect of SIRT1 on extracellular microenvironment remodeling. Int. J. Biol. Sci. 2021;17(1):89–96. DOI: 10.7150/ ijbs.52619.
9. Wei L., Zhang W., Li Y., Zhai J. The SIRT1-HMGB1 axis: Therapeutic potential to ameliorate inflammatory responses and tumor occurrence. Front Cell Dev. Biol. 2022;10: 986511. DOI: 10.3389/fcell.2022.986511.
10. Zhang Y.F., Wei W., Li L., Tu G., Zhang Y., Yang J., Xing Y. SIRT1 and HMGB1 regulate the AGE-induced pro-inflammatory cytokines in human retinal cells. Clin. Lab. 2015; 61(8):999–1008. DOI: 10.7754/clin. lab.2015.150141.
Review
For citations:
Ogneva N.S., Taboyakova L.A., Alimkina O.V., Petrova N.V. Inhalation Administration of Leytragin to C57BL/6Y Mice in an ARDS Model Increases the Expression Level of SIRT1 Gene. Journal Biomed. 2023;19(3):36-41. (In Russ.) https://doi.org/10.33647/2074-5982-19-3-36-41