System Normalized Gamma Oscillations of Brain Structures: Pharmacological Analysis of Neurochemical and Metabolic Processes
https://doi.org/10.33647/2074-5982-20-2-66-94
Abstract
A systematic study of γ-oscillations was carried out using rats with chronically implanted electrodes in the proreal gyrus, somatosensory cortex, dorsal hippocampus, and hypothalamus. Brain electrograms (BE) were recorded and investigated using an original software and hardware module. Linear diagrams were constructed using a QMS17 device in a frequency range of 60–250 Hz or greater. A mathematical analysis, normalization, and rationing of the series of γ-rhythms under the action of gamma-aminobutyric acid (GABA), acetylcholine (ACC), and insulin relative to similar background series were performed by double discrete-time Fourier transform and double angle arctangent function, which allowed us to extract relevant information from extremely small (1–2 μV) values of γ-oscillations. The accumulation of the substances under study was achieved by introducing the Aminalon (GABA), Galantamine (ACC), and liposomal Insulin pharmaceuticals. The plasma concentrations of the studied drugs were verified by HPLC and mathematical modeling. The normalized BE (NBE) reflected the intracentral mechanisms of action of the tested drugs, which were characterized by a stable picture in the resting state of the animals and under the action of Aminalon, Galantamine, and Insulin at the peak of their plasma concentrations (according to pharmacokinetic parameters). The γ-activity of the brain is maintained at the systemic level. Blockade of γ-oscillations in the frontal pole leads to their activation in the associated brain structures: the hypo-thalamus, reticular formation, caudate nucleus, etc. Under the influence of Aminalon, the total depressive effects were observed over the entire analyzed range in the posterior nucleus of the hypothalamus and proreal gyrus, as well as activating effects in the frequency range 60–75 Hz in the anterior suprasylvian gyrus. Under the action of Galantamine, partial depressive effects in the hippocampus and hypothalamus were observed at frequencies of about 60–65, 95–105, and 150 Hz. Under the action of liposomal Insulin, partial activating effects were noted in the anterior suprasylvian gyrus and in the dorsal hippocampus in the frequency range of 60–85 Hz.
Keywords
About the Authors
N. N. KarkischenkoRussian Federation
Nikolay N. Karkischenko, Dr. Sci. (Med.), Prof., Academician of the Russian Academy of Rocket and Artillery Sciences, Corresponding Member of the Russian Academy of Sciences
143442, Moscow Region, Krasnogorsk District, Svetlye Gory Village, 1
Yu. V. Fokin
Russian Federation
Yuriy V. Fokin, Cand. Sci. (Biol.)
143442, Moscow Region, Krasnogorsk District, Svetlye Gory Village, 1
S. Yu. Kharitonov
Russian Federation
Sergey Yu. Kharitonov
143442, Moscow Region, Krasnogorsk District, Svetlye Gory Village, 1
References
1. At`ya M.,Makdonal`d I. Vvedenie v kommutativnuyu algebru [Introduction to commutative algebra]. Moscow: Mir Publ., 1972:115. (In Russian).
2. Bushov Yu.V., Svetlik M.V., Krutenkova E.P. Vysokochastotnaya elektricheskaya aktivnost` mozga i vospriyatie vremeni [High-frequency electrical activity of the brain and perception of time]. Tomsk: Tom. un-ta Publ., 2009:120. (In Russian).
3. Danilova N.N. Chastotnaya specifichnost` oscillyatorov amplituda-ritma [Frequency specificity of amplitude-rhythm oscillators]. Russian Psychological Journal. 2006;2: 35–60. (In Russian).
4. Danilova N.N., Astaf`ev S.V. Vnimanie cheloveka kak specificheskaya svyaz` ritmov EEG s volnovymi modulyatorami serdechnogo ritma [Human attention as a specific connection of EEG rhythms with heart rate wave modulators]. Zhurnal vysshej nervnoj deyatel`nosti [Journal of Higher Nervous Activity]. 2000;50(5):791–804. (In Russian).
5. Danilova N.N., Bykova N.B. Oscillyatornaya aktivnost` mozga i informacionnye processy [Oscillatory brain activity and information processes]. Doklady konf. “Psihologiya: sovremennye napravleniya mezhdisciplinarnyh issledovanij” [Conference reports “Psychology: modern trends in interdisciplinary research”]. Moscow: IPRAN Publ., 2003:271–283. (In Russian).
6. Dejt K.Dzh. Vvedenie v sistemy baz dannyh. 8-e izd. [Introduction to database systems. 8th ed.]. Moscow: Vil`yams Publ., 2005:1328. (In Russian).
7. Dumenko V.N. Vysokochastotnye komponenty EEG i instrumental`noe obuchenie [ High-frequency EEG components and instrumental learning]. Moscow: Nauka Publ., 2006:151. (In Russian).
8. Dumenko V.N., Kozlov M.K. Issledovanie selektivnogo vnimaniya u sobak po dannym kogerentno-fazovyh harakteristik korkovyh potencialov v shirokoj polose chastot 1–220 Gcz [Investigation of selective attention in dogs using coherent-phase data of cortical potentials in the wide frequency band 1-220 Hz]. Zhurn. vyssh. nervn. deyat. [Journal of Higher Nervous Activity]. 2002;4:428–440. (In Russian).
9. Karkischenko N.N. Al´ternativy biomeditsiny. T. 2. Klassika i al´ternativy farmakotoksikologii [Alternatives to biomedicine. Vol. 2. Classics and alternatives of pharmacotoxicology]. Moscow: VPK Publ., 2007:448. (In Russian).
10. Karkischenko N.N. Psihounitropizm lekarstvennyh sredstv [Psychounitropism of drugs]. Moscow: Medicina Publ, 1993:208. (In Russian).
11. Karkischenko N.N., Karkischenko V.N., Fokin Yu.V. O mehanizmah farmakologicheskoj modulyacii obsessivno-kompul`sivnyh i kognitivnyh rasstrojstv koshek, raspoznavaemyh metodom normirovaniya BPF-preobrazuemyh funkcij elektrogramm frontal`noj kory golovnogo mozga i gippokampa [Mechanisms of the Pharmacological Modulation of Obsessive-Compulsive and Cognitive Disorders in Cats Recognized by the Method of Normalizing FFT-Convertible Functions of Electrograms of the Frontal Cortex and Hippocampus]. Biomedicina [ Journal Biomed]. 2020;16(1):12–27. (In Russian). DOI: 10.33647/2074-5982-16-1-12-27.
12. Karkischenko N.N., Karkischenko V.N., Fokin Yu.V., Taboyakova L.A., Alimkina O.V., Borisova M.M. Mezhdu kognitivnost` yu i nejropatiyami: nejrovizualizaciya effektov GAMK-ergicheskoj modulyacii gippokampa i prefronatal` nogo neokorteksa po normirovannym elektrogrammam mozga [Between Cognitivity and Neuropathies: Neuroimaging of the Effects of GABAergic Modulation of the Hippocampus and Prefrontal Neocortexis by Normalized Brain Electrograms]. Biomedicina [Journal Biomed]. 2020;16(2):12–38. (In Russian). DOI: 10.33647/2074-5982-16-2-12-38.
13. Karkischenko N.N., Karkischenko V.N., Fokin Yu.V., Kharitonov S.Yu. Nejrovizualizaciya effektov psihoaktivnyh sredstv posredstvom normalizacii elektrogramm golovnogo mozga [Neuroimaging of the Effects of Psycho-active Substances by Means of Normalization of Brain Electrograms]. Biomedicina [ Journal Biomed]. 2019;15(1):12–34. (In Russian). DOI: 10.33647/2074-5982-15-1-12-34.
14. Karkischenko N.N., Fokin Yu.V., Lyublinskiy S.L. Farmakologicheskaya regulyaciya kognitivnyh funkcij i intracentral`nyh otnoshenij liposomirovannymi acetilxolinom i insulinom [Pharmacological regulation of cognitive functions and intracentral relationships by liposomated acetylcholine and insulin]. Eksperimental`naya i klinicheskaya farmakologiya. Pril. Mat-ly VI s``ezda farmakologov Rossii “Smena pokolenij i sohranenie tradicij. Novye idei — novye lekarstva” [Experimental and clinical pharmacology. Adj. Proceedings of the VI Congress of Pharmacologists of Russia “Generational change and preservation of traditions. New ideas are new medicines”]. 2023;86(11s):70. (In Russian). DOI:10.30906/ekf-2023-86s-70.
15. Karkischenko V.N., Fokin Yu.V., Lyublinskiy S.L., Pomytkin I.A., Alimkina O.V., Taboyakova L.A., Kaptsov A.V., Borisova M.M., Karkischenko N.N. Central`nye mehanizmy liposomirovannyh form acetilholina i insulina posredstvom analiza kognitivnyh, psihoemocional`nyh i povedencheskih parametrov krys [Central mechanisms of liposomal forms of acetylcholine and insulin through analysis of cognitive, psychoemotional and behavioural parameters in rats]. Biomedicina [ Journal Biomed]. 2022;18(1):32–55. (In Russian). DOI: 10.33647/2074-5982-18-1-32-55.
16. Kiroj V.N., Belova E.I. Mehanizmy formirovaniya i rol` oscillyatornoj aktivnosti nejronnyh populyacij v sistemnoj deyatel`nosti mozga [Mechanisms of formation and the role of oscillatory activity of neuronal populations in systemic brain activity]. Zhurn. vyssh. nerv. deyat. [Journal of Higher Nervous Activity]. 2000;50(2):179. (In Russian)
17. Kuznecov S.D. Osnovy baz dannyh. 2-e izd. [The basics of databases. 2nd ed.]. Moscow: BINOM, laboratoriya znanij Publ., 2007:484. (In Russian)].
18. Algebra. Moscow: Mir Publ., 1967:565. (In Russian)
19. Mitrokhin K.V., Baranishin A.A. Klassifikatsiya i kratkoye opisaniye lekarstvennykh preparatov — analogov proizvodnykh gamma-aminomaslyanoy kisloty i toksicheskikh veshchestv, vliyayushchikh na GAMK-yergicheskuyu svyaz' [Classification and brief description of drugs — analogues of derivatives of gamma-aminobutyric acid and toxic substances that affect the GABAergic relationship]. Anesteziologiya i reanimatologiya [Anesthesiology and Intensive Care]. 2018;6:22–30. (In Russian). DOI: 10.17116/anaesthesiology201806122.
20. Panasyuk Ya.A., Macelepa O.B., Chernyshev B.V., Semikopnaya I.I., Moskvitin A.A., Timofeeva N.O. Fonovaya gamma-aktivnost` v elektroencefalogramme kak pokazatel` urovnya ustojchivogo (tonicheskogo) vnimaniya pri realizacii paradigmy “aktivnyj odd-boll” u krolikov [Background gamma-activity in the electroencephalogram as an indicator of the level of sustained (tonic) attention during the implementation of the active-odd-ball paradigm in rabbits]. Zhurn. vyssh. nervn. deyat. [Journal of Higher Nervous Activity]. 2011;61(1):75–84. (In Russian).
21. Pashkov A.A., Dakhtin I.S., Kharisova N.S. Elektroencefalograficheskie biomarkery eksperimental`no inducirovannogo stressa [Electroencephalographic biomarkers of experimentally induced stress]. Vestnik YuUrGU. Seriya “Psikhologiya” [ Bulletin of SUSU. Series “Psychology”]. 2017;10(4):68–82. (In Russian). DOI: 10.14529/psy170407.
22. Pomytkin I.A., Karkischenko N.N. Metabolicheskij kontrol' vysokochastotnyh gamma-oscillyacij v golovnom mozge [Metabolic Control of High-Frequency Gamma Oscillations in the Brain]. Biomedicina [Journal Biomed]. 2019;15(2):43–53. (In Russian). DOI: 10.33647/2074-5982-15-2-43-53.
23. Rukovodstvo po laboratornym zhivotnym i al`ternativnym modelyam v biomedicinskih issledovaniyah [Manual on laboratory animals and alternative models in biomedical research]. Ed. by N.N. Karkischenko, et al. Moscow: Profil`-2S Publ., 2010:358. (In Russian)
24. Saul'skaya N.B., Vinogradova Ye.V. Vliyaniye aktivatsii i blokady GAMKA-retseptorov na aktivnost' nitrergicheskoy sistemy prilezhashchego yadra (n. accumbens) [The effect of activation and blockade of GABAA receptors on the activity of the nitrergic system of the nucleus accumbens (n. accumbens)]. Russian physiological Sechenov Journal. 2014;100(7):791–801. (In Russian).
25. Sorokina N.D., Seliczkij G.V., Kosicyn N.S. Nejrobiologicheskie issledovaniya bioelektricheskoj aktivnosti mozga v diapazone γ-ritma u cheloveka [Neurobiological studies of the bioelectric activity of the brain in the range of gamma rhythm in humans]. Uspehi fiziol. nauk [Successes of the physiological sciences]. 2006;37(3):3–10. (In Russian).
26. Utochkin I.S. Teoreticheskie i empiricheskie osnovaniya urovnevogo podhoda k vnimaniyu. Psihologiya [Theoretical and empirical foundations of a level-based approach to attention. Psychology]. Zhurn. Vyssh. shkoly ekonomiki [Journal of Higher Schools of Economics]. 2008;5(3):31–66. (In Russian).
27. Fifkov E., Marshal Dzh. Stereotaksicheskie atlasy mozga koshki, krolika i krysy [Stereotactic atlases of the cat, rabbit and rat brain]. V kn.: Elektrofiziologicheskie metody issledovaniya [In the book: Electrophysiological methods of research] (Buresh Ya., Petran` M., Zahar I.). Transl.: KederStepanova I.A. Moscow: Izd-vo inostrannoj literatury Publ., 1962:456. (In Russian).
28. Fokin Yu.V. Sravnitel`naya ocenka vliyaniya psihoaktivnyh sredstv na gippokampal`nye teta- i gamma-ritmy [Comparative Evaluation of the Effect of Psychoactive Medicines on Hippocampal Theta and Gamma Rhythms]. Biomedicina [ Journal Biomed]. 2019;15(3):23–32. (In Russian). DOI: 10.33647/2074-5982-15-3-12-34.
29. Fokin Yu.V., Kharitonov S.Yu., Karkischenko N.N. Farmako-EEG analiz effektov regulyatornyh nejropeptidov s nootropnymi svojstvami u koshek [Pharmaco-EEG Analysis of Regulatory Neuropeptides with Nootropic Properties in Cats]. Biomedicina [Journal Biomed]. 2023;19(2):8– 15. (In Russian). DOI: 10.33647/2074-5982-19-2-8-15.
30. Fokin Yu.V., Kharitonov S.Yu., Taboyakova L.A., Karkischenko N.N. Farmako-EEG analiz vliyaniya na gippokamp koshek acetilholina i insulina v nanochastitsah [Pharmaco-EEG Analysis of the Effect of Acetylcholin and Insulin in Nanoparticles on the Hippocampus of Cats]. Biomedicina [ Journal Biomed]. 2023;19(3):58–65. (In Russian). DOI: 10.33647/2074-5982-19-3-58-65.
31. Chernyshev B.V., Panasyuk Ya.A., Semikopnaya I.I., Timofeeva N.O. Aktivnost` nejronov bazal`nogo krupnokletochnogo yadra pri realizacii instrumental`nogo uslovnogo refleksa [The activity of neurons of the basal large cell nucleus during the implementation of the instrumental conditioned reflex]. Zhurn. vyssh. nerv. deyat. [Journal of Higher Nervous Activity]. 2003;53(5):633–645. (In Russian).
32. Shabanov P.D., Vislobokov P.D., Shilov G.N., Bulay P.M., Lugovskiy A.P. Izmeneniye vnutrikletochnykh potentsialov i ionnykh tokov neyronov mollyuskov i aktivnosti Cl-kanalov pod vliyaniyem nekotorykh tormoznykh aminokislot i novykh litiysoderzhashchikh soyedineniy na ikh osnove [Changes in intracellular potentials and ionic currents of mollusk neurons and Cl-channel activity under the influence of some inhibitory amino acids and new lithium-containing compounds based on them]. Obzory po klinicheskoj farmakologii i lekarstvennoj terapii [Clinical pharmacology and drug therapy reviews]. 2015;3(3):39–47. (In Russian).
33. Shilov G.N., Bubel' O.N., Shabanov P.D. Noviy podkhod k ponimaniyu struktury, funktsii i klassifikatsii GAMK-benzodiazepinovogo retseptornogo kompleksa, molekulyarnoy misheni dlya razrabotki novykh antikonvul'santov na baze tormoznykh aminokislot [A new approach to understanding the structure, function and classification of the GABA-benzodiazepine receptor complex, a molecular target for the development of new anticonvulsants based on inhibitory amino acids]. Obzory po klinicheskoj farmakologii i lekarstvennoj terapii [Clinical pharmacology and drug therapy reviews]. 2016;14(3):34–45. (In Russian).
34. Allen H., Llddle P.P., Frith C.D. Negative features, retrieval processes and verbal fluency in schizophrenia. Br. J. Psychiatry. 1993;163:769–775.
35. Başar E., Basar-Eroglu C., Karakas S., Schurman M. Brain oscillation in perception and memory. International Journal of Psychophysiology. 2000;35:95.
36. Başar E., Femir B., Emek-Savaş D.D., Güntekin B., Yener G.G. Increased long distance event-related gamma band connectivity in Alzheimer's disease. Neuroimage Clin. 2017;14:580–590. DOI: 10.1016/j.nicl.2017.02.021.
37. Başar E., Emek-Savaş D.D., Güntekin B., Yener G.G. Delay of cognitive gamma responses in Alzheimer's disease. Neuroimage Clin. 2016;11:106–115. DOI: 10.1016/j.nicl.2016.01.015.
38. Berger A., Posner M.I. Pathologies of brain attentional networks. Neurosci. Biobehav. Rev. 2000;24(1):3–5.
39. Borgers C., Epstein S., Kopell N.J. Background gamma rhythmicity and attention in cortical local circuits: a computational study. Proc. Natl. Acad. Sci. USA. 2005;102:7002–7007.
40. Bouyer J.J., Montaron M.F., Rougeul A., Buser P. Parietal electrocortical rhythms in the cat: their relation to a behavior of focused attention and possible mesencephalic control through a dopaminergic pathway. C.R. Seances. Acad. Sci. 1980;291:779–783.
41. Bresslerr S.L. Large-scale cortical networks and cognition. Brain Research Reviews. 1995;20:288–304.
42. Buzsáki G. Theta oscillations in the hippocampus. Neuron. 2002;33(3):325–340.
43. Calì C., Tauffenberger A., Magistretti P. The Strategic Location of Glycogen and Lactate: From Body Energy Reserve to Brain Plasticity. Front Cell Neurosci. 2019;13:82. DOI: 10.3389/fncel.2019.00082.
44. Cape E.G., Jones B.E. Effects of glutamate agonist versus procaine microinjections into the basal forebrain cholinergic cell area upon gamma and theta EEG activity and sleep-wake state. Eur. J. Neurosci. 2000;12:2166-2184.
45. Cho R.Y., Konecky R.O., Carter C.S. Impairments in frontal cortical gamma synchrony and cognitive control in schizophrenia. Proceedings of the National Academy of Sciences of the United States of America. 2006;103(52):19878–19883. DOI: 10.1073/pnas.0609440103.
46. Debener S., Hermann C.S., Kranczioch C., Gembris D., Engel A.K. Topdown attentional processing enhances evoked gamma band activity. Neuroreport. 2003;14:683–686.
47. Dehaene S., Changeux J.P. Ongoing spontaneous activity controls access to consciousness: a neuronal model for inattentional blindness. PLoS. Biol. 2005;3(5):e141.
48. Ebert U., Kirch W. Scopolamine model of dementia: electroence-phalogram findings and cognitive performance. Eur. J. Clin. Invest. 1998;28:944–949.
49. Eckhorn R., Bauer R., Jorden W., Brosch M., Kruse W., Munk M.H.J., Reitboeck H.J. Coherent oscillations: a mechanizm of feature linking in the visual cortex? Multiple electrode and correlation analysises in the cat. Biological Cybernetics. 1988;60:121–130.
50. El Messari S., Leloup C., Quignon M., Brisorgueil M.J., Penicaud L., Arluison M. Immunocytochemical localization of the insulin-responsive glucose transporter 4 (Glut4) in the rat central nervous system. J. Comp. Neurol. 1998;399(4):492–512.
51. Engel A.K., Fries P., Singer W. Dynamic prediction: oscillations and synchrony in top-down processing. Nat. Rev. Neurosci. 2001;2:704–716.
52. European Convention for the Protection of Vertebrate Animals Used for Experimental and other Scientific Purposes (ETS 123), Strasbourg, 1986.
53. Fornasari D. Pharmacotherapy for Neuropathic Pain: A Review. Pain Ther. 2017;6(1):25–33. DOI: 10.1007/s40122-017-0091-4.
54. Fries P., Reynolds J., Rorie A.E., Desimone R. Modulation of oscillatory neuronal synchronization by selective visual attention. Science. 2001;291:1560–1563.
55. Fries P., Roelfsema P.R., Engel A.K., Koning P., Singer W. Sinchronization of oscillatory responses in visual cortex correlates with perception in interocular rivalry. Proceedings of the National Academy of Science USA. 1997;94:12699–12704.
56. Galambos R. A comparison of certain gamma band (40-HZ) brain rhythms in cat and man. In E. Basar & T.H. Bullak (Eds) Induced Rhythms in the Brain, Boston: Brikhauser, 1992:201–206.
57. Galow L.V., Schneider J., Lewen A., Ta T.T., Papageorgiou I.E., Kann O. Energy substrates that fuel fast neuronal network oscillations. Front Neurosci. 2014;8:398. DOI: 10.3389/fnins.2014.00398.
58. Golmayo L., Nunez A., Zaborszky L. Electrophysiological evidence for the existence of a posterior cortical-prefrontal-basal forebrain circuitry in modulating sensory responses in visual and somatosensory rat cortical areas. Neuroscience. 2003;119(2):597–609.
59. Gross D.W., Gotman J. Correlation of high-frequency oscillations with the sleep-wake cycle and cognitive activity in humans. Neuroscience. 1999;94: 1005–1018.
60. Grossherg S., Gumewald A. Cortical synchronization and perceptual framing. J. Cognitive Neurosci. 1997;9(1):117.
61. Herculano-Houzel S., Munk M.H.J., Neuenschwan-der S., Singer W. Precisely synchronizeed oscillatory firing patterns require electroencephalographic activation. J. Of Neuroscience. 1999;19:3992–4010.
62. Hermann C.S., Demiralp T. Human EEG gamma oscillations in neurophsychiatric disorders. Clin. Neurophys. 2005;116:2719–2733.
63. Herrmann C.S., Knight R.T. Mechanisms of human attention: event-related potentials and oscillations. Neurosci. Behav. Rev. 2001;25:465–476.
64. Herrman C.S., Mecklinger A., Pfeifer E. Gamma response and ERPs in visual classification task. Clin. Neurophysiol. 1999;110:636–642.
65. Kann O., Huchzermeyer C., Kovács R., Wirtz S., Schuelke M. Gamma oscillations in the hippocampus require high complex I gene expression and strong functional performance of mitochondria. Brain. 2011;134(2):345–358. DOI: 10.1093/brain/awq333.
66. Kann O., Papageorgiou I.E., Draguhn A. Highly energized inhibitory interneurons are a central element for information processing in cortical networks. J. Cereb. Blood Flow Metab. 2014;34(8):1270–1282. DOI: 10.1038/jcbfm.2014.104.
67. Khakh B.S., Henderson G. Modulation of fast synaptic transmission by presynaptic ligand-gated cation channels. J. Auton. Nerv. Syst. 2000;81(1-3):110–121.
68. Khirug S., Yamada J., Afzalov R., Voipio J., Khiroug L., Kaila K. GABAergik depolarization of the axon initial segment in cortical principal neirons is caused by the Na-K-2Cl cotransporter NKCC1. J. Neurosci. 2008;28:4635–4639.
69. Kullmann D.M. Spillover and synaptic cross talk mediated by glutamate and GABA in the mammalian brain. Prog. Brain Res. 2000;125:339–351.
70. Kurudenkandy F.R., Zilberter M., Biverstål H., Presto J., Honcharenko D., Strömberg R., Johansson J., Winblad B., Fisahn A. Amyloid-β-induced action potential desynchronization and degradation of hippocampal gamma oscillations is prevented by interference with peptide conformation change and aggregation. J. Neurosci. 2014;34(34):11416–11425. DOI: 10.1523/JNEUROSCI.1195-14.2014.
71. Lee K.-H., William L.M., Breakspear M., et al. Synchronous Gamma activity: a review and contribution to an integrative neuroscience modelof schizophrenia. Brain Res. Rev. 2003;41:57–78.
72. Makeig S., Jung T.P. Tonic, phasic, and transient EEG correlates of auditory awareness in drowsiness. Cogn. Brain Res. 1996;4:15–25.
73. Mason B.J., Quello S., Shadan F. Gabapentin for the treatment of alcohol use disorder. Expert Opin Investig Drugs. 2018;27(1):113–124. DOI: 10.1080/13543784.2018.1417383.
74. Mesulam M.M., Mufson E.J., Wauner B.H., Levey A.I. Central cholinergic pathways in the rat: an overview based on an alternative nomenclature (Ch1-Ch6). Neuroscience. 1983;10:1185–1201.
75. Mima T., Simpkins N., Oluwatimilehin T., Hallett M. Force Level Modulates Human Cortical Oscillatory Activities. Neuroscience Letters. 1999;275(2):77–80.
76. Oliveira L.T., Leon G.V.O., Provance D.W. Jr., de Mello F.G., Sorenson M.M., Salerno V.P. Exogenous β-amyloid peptide interferes with GLUT4 localization in neurons. Brain Res. 2015;1615:42–50. DOI: 10.1016/j.brainres.2015.04.026.
77. Orekhova E.V., Rostovtseva E.N., Manyukhina V.O., Prokofiev A.O., Obukhova T.S., Nikolaeva A.Yu., Schneiderman J.F., Stroganova T.A. Spatial suppression in visual motion perception is driven by inhibition: Evidence from MEG gamma oscillations. NeuroImage. 2020;213:116753. DOI: 10.1016/j.neuroimage.2020.116753.
78. Palovcik R.A., Phillips M.I., Kappy M.S., Raizada M.K. Insulin inhibits pyramidal neurons in hippocampal slices. Brain Res. 1984;309(1):187–191.
79. Pearson-Leary J., McNay E.C. Intrahippocampal administration of amyloid-β(1-42) oligomers acutely impairs spatial working memory, insulin signaling, and hippocampal metabolism. J. Alzheimers Dis. 2012;30(2):413–422. DOI: 10.3233/JAD-2012-112192.
80. Pulvermuller F., Eulitz C., Pantev C., et al. Highfrequency conical responses reflect lexical processing: an MEG study. Electroencephalogr. Clin. Neurophysiol. 1996;(98):76–85.
81. Pulvermuller F., Lutzenberger W., Preissl H. Nouns and verbs in intact brain: Eviden from event-related potentials and high — frequency cortical responses. Cereb. Cortex. 1999;(9):497–506.
82. Roberto M., Gilpin N.W., O’Dell L.E., et al. Cellular and behavioral interactions of gabapentin with alcohol dependence. J. Neurosci. 2008;28(22):5762–5771. DOI: 10.1523/JNEUROSCI.0575-08.2008.
83. Rodriguez R., Kallenbach U., Singer W., Munk M.H. Short- and long-term effects of cholinergic modulation on gamma oscillations and response synchronization in the visual cortex. J. Neurosci. 2004;24:10369–10378.
84. Sannita W.G. Stimulus-specific oscillatory responsess of the brain: a time/frequency-related coding process. Clinical Neurophysiology. 2000;111(4):565–583.
85. Saper C.B. Organization of cerebral cortical afferent systems in the rat. II. Magnocellular basal nucleus. J. Comp. Neurol. 1984;222:313–342.
86. Sheer D.E. Fucused arousal, 40-Hz EEG, and dysfunction. In: Self-Regulation of the Brain and Behavior. Elbert Т., Rockstroh В., Lutzenberger W., et al. (Eds.). Berlin: Springer, 1984:64–84.
87. Shibata T., Shimoyama I., Ito T., Abla D., Iwasa H., Koseki K., Yamanouchi N., Sato T., Nakajima Y. Event-Related Dynamics of the Gamma-Band Oscillation in the Human Brain — Information-Processing During a Go/Nogo Hand Movement Task. Neuroscience Research. 1999;33(3):215–222.
88. Singer W., Gravis С.М. Visual feature integration and the temporal correlation hypothesis. Ann. Rev. Neurosci. 1995;18:555–586.
89. Sohal V.S., Zhang F., Yizhar O., Deisseroth K. Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature. 2009;459(7247):698–702. DOI: 10.1038/nature07991.
90. Suzuki A., Stern S.A., Bozdagi O., Huntley G.W., Walker R.H., Magistretti P.J., Alberini C.M. Astrocyteneuron lactate transport is required for long-term memory formation. Cell. 2011;144(5):810–823. DOI: 10.1016/j.cell.2011.02.018.
91. Szabadics J., Varga C., Molnar G., Olah S., Barzo P., Tamas G. Excitatory effect of GABAergic axo-axonic cells in cortical microcircuits. Science. 2005:311.
92. Talbot K., Wang H.Y., Kazi H., Han L.Y., Bakshi K.P., Stucky A., Fuino R.L., Kawaguchi K.R., Samoyedny A.J., Wilson R.S., Arvanitakis Z., Schneider J.A., Wolf B.A., Bennett D.A., Trojanowski J.Q., Arnold S.E. Demonstra-ted brain insulin resistance in Alzheimer's disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline. J. Clin. Invest. 2012;122(4):1316–1338. DOI: 10.1172/JCI59903.
93. Tallonbaudry C., Kreiter A., Bertrand O. Sustained and Transient Oscillatory Responses in the Gamma-Band and Beta-Band in a Visual Short-Term-Memory Task in Humans. Visual Neuroscience. 1999;16(3):449–459.
94. Tremblay R., Lee S., Rudy B. GABAergic Interneurons in the Neocortex: From Cellular Properties to Circuits. Neuron. 2016;91(2):260–292. DOI: 10.1016/j.neuron.2016.06.033.
95. Zaborszky L., Gaykema R.P., Swanson D.J., Cullinan W.E. Cortical input to the basal forebrain. J. Neirosci. 1997;79(4):1051–1078.
Review
For citations:
Karkischenko N.N., Fokin Yu.V., Kharitonov S.Yu. System Normalized Gamma Oscillations of Brain Structures: Pharmacological Analysis of Neurochemical and Metabolic Processes. Journal Biomed. 2024;20(2):66-94. (In Russ.) https://doi.org/10.33647/2074-5982-20-2-66-94